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Abstract 

Although difficulties processing both symbolic and non-symbolic proportion compared to 

absolute number are well established, the mechanisms involved remain unclear. We investigate 

four potential explanations to account for better number processing in adulthood: (1) number is 

more salient than proportion, (2) number is encoded more automatically than proportion, (3) 

proportion is more effortfully processed than number, and (4) number competes with proportion 

during decision-making. Across three experiments, we used a delayed match-to-sample paradigm 

in which adults were asked which of two alternatives matched a sample set of red and blue dots. 

We systematically manipulated which dimension of the sample participants matched (number of 

red dots, total number of dots, proportion of red dots), the presence/absence of the competing 

quantity in the choice alternatives, and when they were told which quantitative dimension to 

encode (before versus after the sample presentation, or not at all). Overall, data reveal that 

proportion was less salient than the numerical subset. Additionally, the number of items within 

the subset, but not the total number of items in the superset, interfered with proportion-based 

responding. Lastly, even in the absence of response competition and costly task demands, 

proportion matching took longer than number matching, highlighting basic processing 

differences. Together, results reveal pervasive difficulties in representing proportion compared to 

number, even when task demands are unambiguous. However, this varied depending on the 

numerical set involved and across encoding, processing, and decision processes. We discuss the 

implications of these findings for theories of ratio processing and of quantity more generally.  

Keywords: proportion, numerical interference, discrete quantity, fractions  
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Spontaneous and Directed Attention to Number and Proportion 

Research in both psychology and education has highlighted children’s difficulty with 

formal fractions (Lortie-Forgues et al., 2015; National Governors Association Center for Best 

Practices, 2010). At least some of these difficulties have been attributed to the interference of 

whole number information in the way children interpret proportion (Braithwaite & Siegler, 2018; 

Ni & Zhou, 2005; Siegler & Lortie-Forgues, 2014). Although most of this work has focused on 

difficulties with interpreting symbolic proportion (i.e., fractions and decimals represented with 

numerals), recent studies have noted interesting parallels with non-symbolic representations of 

proportion (e.g., pie charts, groups of items). That is, when interpreting both symbolic and non-

symbolic proportional information, whole number information has been found to interfere with 

proportional judgments (Boyer et al., 2008; Fabbri et al., 2012; Hurst & Cordes, 2018a; Jeong et 

al., 2007). Given that this whole number interference arises even before children encounter 

fraction or decimal instruction (by around 6-years-old; Hurst & Cordes, 2018a) and continues 

into adulthood (even for visual non-symbolic representations; Fabbri et al., 2012), one step 

toward better understanding the challenges posed by formal fractions is to understand the 

difficulties children and adults encounter when interpreting proportional information in non-

symbolic contexts. 

Some evidence suggests that the saliency of counting for young children increases their 

attention to whole numbers when that countable numerical information is available. These 

studies reveal that when presented with continuous proportional information (in which 

proportional information is available but numerical information is not – that is, there are no 

countable units), children are able to make judgments based upon proportion (e.g., Boyer et al., 

2008; Hurst & Cordes, 2018a; Jeong et al., 2007). However, when the proportional information 
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is presented discretely with demarcated units, making it possible for children to count them, 

children tend to use the number of salient pieces to make judgments (e.g., judging that a display 

with 5 of 8 blue pieces has a greater proportion of blue than another containing 3 of 4 because 5 

> 3), despite being asked to make judgments based on proportion (Boyer et al., 2008; Hurst & 

Cordes, 2018a; Jeong et al., 2007). This over-reliance on whole numbers at the expense of 

proportion in discrete contexts appears to be due to children’s use of counting strategies; only 

when these strategies are not available (either because the information is not countable or 

because children are young enough to not yet have mastered counting) will they then rely on 

proportion instead (Boyer et al., 2008; Hurst & Cordes, 2018a).  

This pattern is not only found in children who are still developing their understanding of 

number and proportion; even adults, who have substantial experience with whole numbers and 

fractions, show evidence of numerical interference (Fabbri et al., 2012). For example, Fabbri and 

colleagues (2012) asked adults to judge the ratios between two sets of dots and found that the 

number of dots in the subsets interfered with the processing of the ratio. Furthermore, although 

adults are able to process ratio information fairly flexibly across representations (Matthews & 

Chesney, 2015), some evidence suggests that it may be more difficult to represent ratio 

information than absolute numerical information (Fabbri et al., 2012). Thus, both early in 

development and into adulthood, absolute numerical information appears to be privileged over 

proportional information.  

This numerical1 advantage and interference, however, may not be an inherent or necessary 

aspect of proportional reasoning. In support of this, some evidence suggests that in the context of 

discrete quantities, where numerical and proportional information are both readily available, this 

 
1 Throughout, we will use the term “numerical” to refer to whole number information. 
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over-attention to numerical information may be quite malleable early in development. For 

example, with only a short period of experience comparing continuous proportional amounts 

(i.e., judging proportion in a context in which contrasting whole-number information is not 

available), children are less likely to rely on a numerical strategy in subsequent trials where 

discrete quantities are available (Boyer & Levine, 2015; Hurst & Cordes, 2018a). In addition, 

introducing children to equivalent proportions using categorical, as opposed to numerical, 

language may help them attend to the relations over absolute number (Hurst & Cordes, 2019). 

Thus, although numerical interference is evident early in development and remains in adulthood, 

the malleability of this numerical interference suggests that it may not be an inherent or 

necessary aspect of thinking about proportion. 

An important next step to studying proportional reasoning is to investigate why numerical 

information appears to have an advantage over proportional information. Is numerical 

information more readily encoded and/or more difficult to inhibit? To address this question, it is 

important to determine at what point during quantitative processing numerical information 

supersedes proportional information. In the current study, we consider four possible mechanisms 

that could contribute to these numerical biases: (1) differences in the relative salience of 

numerical and proportional information, (2) differences in the automaticity of encoding number 

and proportion, (3) differences in the ease of processing number and proportion, and (4) 

differences in the ability to inhibit alternative responses during the decision-making process. 

Importantly, these potential contributors are not mutually exclusive and are potentially 

overlapping, yet we can consider specific behavioral predictions in which each factor may 

contribute. To do so, we developed a Delayed Match-to-Sample task (MTS), where participants 

viewed an array of bi-colored dots and then chose another array from two alternatives that 
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matched either the sample’s absolute number or proportion. Importantly, across three 

experiments, we manipulated (1) the ambiguity of task instructions, allowing us to investigate 

the relative salience of these two dimensions without explicit instructions; (2) the timing of the 

prompt to encode a specific quantity dimension (i.e., instructions to attend to number versus 

proportion occurred either before or after the presentation of the sample, providing relevant 

information to the participant prior to, or just after, encoding), as well as (3) whether or not the 

two choice alternatives matched the sample along the relevant and irrelevant quantity dimension, 

thus requiring inhibition at the time of decision making. These manipulations allowed us to shed 

light on the point(s) in the cognitive process during which absolute number and relative 

proportion compete.  

One possibility is that numerical information is inherently more salient. There is some 

evidence that attending to numerical information does depend on the relative salience of other 

relevant features (Chan & Mazzocco, 2017) and that there are individual differences in how 

readily we mentally access rational number magnitude (Alibali & Sidney, 2015). For example, 

children are less likely to use number to match two stimulus arrays when number competes with 

color (a highly salient alternative) compared to when number competes with orientation (a less 

salient alternative; Chan & Mazzocco, 2017). In addition, research directly comparing proportion 

and number suggests that number consistently interferes with proportion, but proportion less 

consistently interferes with number (Fabbri et al., 2012). This suggests that although certain 

aspects of both number and proportion may be automatically encoded, number may still be more 

salient than proportion, leading to more consistent attention to numerical information. If number 

is more salient than proportion, then in the absence of direct instruction when task demands are 
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ambiguous, adults will spontaneously rely on numerical information more than proportional 

information. This is a possibility we explore in Experiment 1. 

Another deeply related possibility is that numerical information is more automatic, 

whereas attending to proportion is more effortful. Fabbri and colleagues (2012) found that both 

number and proportion interfered with each other, suggesting they are both automatically 

encoded to some extent. However, participants were also much slower at matching on proportion 

than on number, suggesting the proportional information required more effortful processing. On 

the other hand, other researchers have suggested that proportional information is processed 

through a perceptual Ratio Processing System (RPS; Lewis et al., 2016) and that even symbolic 

fractions may not require computation to access magnitude (Binzak & Hubbard, 2020). Here, we 

investigate two separate ways in which proportional information may be more effortful and/or 

less automatic: automaticity at the level of encoding and differences in the effortful cost of 

processing outside encoding.  

At the level of encoding, we investigate whether numerical and proportional information 

are both automatically encoded, or alternatively if numerical information is more automatic, by 

manipulating the timing of encoding. If number and proportion are differentially encoded, then 

whether individuals are instructed to encode proportional or numerical information prior to 

seeing an array compared to after seeing it may impact the accuracy with which this information 

is encoded. More specifically, if there is a cognitive cost of encoding both number and 

proportion, then we should observe a difference in performance as a function of whether the 

instruction to attend to number or proportion is provided prior to versus after the presentation of 

the sample. Specifically, we should see an effect of the Probe Timing; the prompt occurring 

before the sample resolves ambiguity about which dimension to attend to, but when the prompt 
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occurs after the sample, and thus participants do not know which quantity is the relevant one, 

they must simultaneously attend to both number and proportion. If proportion is less 

automatically encoded than number, then probe timing will exert a greater effect when matching 

on proportion than on number. We explore this in Experiment 2. 

At a more general level, we can also ask whether number and proportion show differences 

in processing demands. That is, regardless of the level of encoding, if there is a more general 

cognitive cost to reasoning about proportion than number, then we should see differences in 

performance on trials in which they must attend to number compared to those when they must 

attend to proportion. That is, if adults engage in effortful computational processes when 

encoding proportional information, but not for number, then it may take longer and/or be more 

error prone to make proportional matches, even on trials in which there is an unambiguous 

correct choice (i.e., Simple Match trials, as will be described below). The contribution of this 

possible mechanism is tested in Experiments 2 and 3. 

The final possibility we explore here is the role of interference. That is, differences in how 

the information is prioritized during the decision-making process. If numerical information is 

prioritized and more difficult to inhibit than proportional information, then we would expect 

performance to drop when matching proportion in the presence of competing numerical response 

options, relative to when a numerical response option is not available. Specifically, performance 

on the match-to-sample task is expected to be worse when the incorrect response option matches 

the sample on absolute number (referred to as Competition trials) compared to when the 

incorrect response option does not match on numerical features (referred to as Simple Match 

trials). Notably, this explanation is somewhat dependent on differences in saliency or encoding 

discussed above. For there to be the opportunity for response competition, numerical information 
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must be automatically encoded from the response options. However, if there is an additional cost 

of the difficulty in inhibiting a numerical response, we would expect that in the presence of 

competing response options, proportional reasoning would be even more difficult. We examine 

this possibility in Experiments 2 and 3. 

 

Table 1: Operationalization of the questions for each hypothesized (and overlapping) mechanism  

Testable 

Mechanism 
Specific Question  Experiment(s) Operationalization 

Saliency 

Are adults more likely to match on 

the number of red than proportion of 

red in the absence of instruction? 

Exp 1: Subset, No 

Probe 

Preference for number on 

competition trials without a 

probe 

Encoding 

Automaticity 

Is there a difference in the additional 

cost to performance when adults 

must encode both number and 

proportion vs. can focus on the 

relevant dimension only? 

Exp 2: Subset, with 

probe 

Interaction between Probe 

Timing and Quantitative 

Dimension  

Processing 

Costs 

Is there a general cost to accuracy or 

reaction time when matching on 

proportion, in the absence of 

encoding or competition demands? 

Exp 2 & 3: Subset 

& Total, with probe 

Better performance on Simple-

Match trials when matching on 

Number compared to Proportion 

Response 

Competition 

Is there an additional cost to 

accuracy when matching on 

proportion in the presence of a 

numerical match (vs. not)? 

Exp 2 & 3: Subset 

& Total, with probe 

When matching on Proportion, 

better performance on Simple-

Match trials than Competition 

trials 

 

 

As summarized in Table 1, we consider four mechanisms that may contribute to the 

observed numerical interference in proportional reasoning tasks. We do so across three 

experiments measuring how adults process proportional and numerical information in the context 
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of discrete, non-symbolic displays, when given no explicit directions (to explore differences in 

saliency via spontaneous preferences; Experiment 1) and when explicitly directed to attend to 

numerical or proportional information (Experiments 2 and 3). Much of the research that has 

investigated numerical interference in non-symbolic contexts has focused primarily on 

interference from the “numerator” information, such as the number of target items out of the total 

set (Fabbri et al., 2012; Hurst & Cordes, 2018a). Furthermore, research that has compared 

interference from both the total amount and the relevant subset in non-symbolic proportional 

reasoning contexts suggest that, at least for young children, the numerical subset (i.e., 

“numerator”) may interfere more strongly with proportional information than the total amount 

(i.e., “denominator”; Boyer et al., 2008). Thus, in the current study, we focused primarily on the 

potential mechanisms explaining differences in reasoning about the numerical subset versus 

proportion (Experiments 1 and 2). However, there is some evidence in symbolic fractions that 

both the numerator and the denominator can interfere with fraction magnitude processing 

(Bonato et al., 2007). So, in Experiment 3 we compared proportion to numerical information of 

both the relevant subset and the total number (the “denominator”), to provide some initial 

investigation of whether the same mechanisms might contribute to numerical processing of total 

information as well as subset information.    

Notably, we investigated this with adult participants (i.e., college undergraduates) because 

adults already have extensive educational experience with whole numbers, fractions, and 

percentages, allowing us to investigate the nature of this interference at an educational stage in 

which both types of quantity should be highly familiar. 

Experiment 1 
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 In Experiment 1, we explored spontaneous preferences to attend to number and 

proportion of a display, without probes or explicit instructions. In doing so, we addressed our 

first question of whether numerical information is more salient than proportional information in 

discrete non-symbolic displays.  

Method 

Participants 

The sample consisted of 60 undergraduate college students (Mage = 19.35 years, range: 18 

years to 22 years, nfemales = 47, nmales = 13) who completed a match-to-sample (MTS) task and an 

open-ended survey about their strategies (followed by a subjective numeracy scale, reported in 

supplementary only). Our sample size was sufficient to detect an effect as small as 0.36 on the 

primary analysis (a one-sample t-test versus chance) with 80% power (sensitivity analysis in 

G*Power; Faul et al., 2007). Adults participated for partial course credit in our campus 

laboratory. The Boston College Institutional Review Board approved all study procedures and 

participants provided informed consent prior to participating. 

Stimuli 

 Each trial in the spontaneous MTS task consisted of three dot arrays: a sample stimulus 

(the initial stimulus, to which participants needed to identify a match) and two choice stimuli 

presented simultaneously as response options. All stimuli were comprised of a set of red and blue 

intermixed dots (size of the dots was constant both within and between arrays: 1.27 cm in 

diameter) presented inside a white rectangle (22.2 cm tall by 26.7 cm wide). Sample stimuli were 

presented in the center of the screen (47.6 cm wide by 26.7 cm long computer monitor) and the 

two choice alternatives were presented side by side, surrounded by a 1.1 cm grey border.   
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The spontaneous MTS task consisted of two types of trials: Standard trials and 

Competition trials. On Standard trials (Figure 1, Panel A), one of the choice alternatives 

matched the sample stimulus on both the number of red dots and the proportion of red dots (i.e., 

it had the same number of red and blue dots as the sample stimulus and only the arrangement 

differed). The other choice alternative did not match the sample stimulus on either feature (e.g., 

if sample stimulus had 4 red dots and 8 blue dots, one comparison stimulus would have 4 red 

dots and 8 blue dots and the other comparison stimulus might have 6 red dots and 5 blue dots). 

On Competition trials (Figure 1, Panel B), one of the choice alternatives matched the sample on 

the number of red dots, but not the proportion of red dots (i.e., it had a different number of blue 

dots, thereby altering the red:blue ratio; Number of Red Match) and the other choice alternative 

matched the sample on the proportion of red dots, but not in the number of red or blue dots (i.e., 

the absolute quantity of red and blue dots differed from the sample, but the red:blue ratio 

remained the same; Proportion Match). For example, if the sample stimulus had 4 red dots and 8 

blue dots, the number match choice alternative might have 4 red dots and 5 blue dots (same 

number of red dots) and the proportion match choice alternative might have 7 red dots and 14 

blue dots (same proportion of red).  
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 For all stimuli, the number of dots ranged from: 1 to 18 for red dots, 1 to 24 for blue dots, 

and 3 to 30 for total number of dots and the proportion of red dots (out of the total) ranged from 

0.1 to 0.94.  For Standard trials, the average ratio between the number of red dots displayed on 

each of the two choice alternatives was 2.0 (range: 1.2 to 2.7) and the average ratio between the 

proportion of red dots (i.e., the ratio of ratios) between the two choice alternatives was 2.0 

(range: 1.4 to 2.7). For Competition trials, the number of red dots in the two choice alternatives 

differed by an average ratio of 2 and the proportion of red dots in the two choice alternatives 

differed by an average ratio of approximately 1.9 (range: 1.3 to 3.2).  

Figure 1: Example stimuli of each type and from each Experiment. Panel A: Standard trials had the same 

basic structure in all three experiments. Panel B: Competition trials were used in all three experiments. In 

Experiments 1 and 2, only proportion vs. number of red trials (top) were used. In Experiment 3, both 

proportion vs. number of red (top) and proportion vs. total number (bottom) were used. Panel C: Simple-

Match trials were used only in Experiments 2 and 3. In Experiment 2, proportion trials (top example) and 

number of red (middle example) trials were used. In Experiment 3, all three trial types, proportion (top), 

number of red, (middle), and total number (bottom), were used. 
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Additionally, to provide some control over the spread of the dots, we equated dot density 

across the correct and incorrect alternatives by changing the size of the background upon which 

the arrays were placed dependent upon the number of dots in the array (e.g., the background of 

an array containing 10 dots would be half the size of the background of an array containing 20 

dots).  We did not control for other continuous aspects of the displays (e.g., cumulative area or 

contour length) because these features are available for both numerical and proportional 

information (i.e., the relation between the number of red and the proportion of red out of the total 

is the same regardless of if that amount/proportion is calculated based on number or cumulative 

area). We discuss this further in the General Discussion.  

Procedure  

Participants were told they would play a matching game in which they would see a single 

picture followed by two pictures. Instructions did not use the words number, percentage, 

proportion, quantity, sets of dots, or any other numerical or quantity-based words, but instead 

simply emphasized matching “pictures”. Participants received a total of 56 trials: 12 initial 

Standard trials used as familiarization, followed by 44 test trials (Standard and Competition 

trials, intermixed in a random order). Each trial consisted of a visual mask (1000ms), a target 

stimulus (1000ms), a visual mask (1000ms), the two response options (displayed until response 

selected), and feedback (1000ms). See Panel A of Figure 2 for a visual depiction of this trial 

procedure. Participants selected their response by pressing the left or right arrow key to 

correspond to the left or right stimulus, respectively. All trials (familiarization and test) were 

presented continuously, without a break or pause. 
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On each trial, participants were given feedback in the form of a green check (to indicate 

they were correct) or a red X (to indicate they were incorrect), following their response selection. 

During familiarization (only Standard trials), participants were shown they were correct (green 

check) if they selected the option that matched on both number and proportion of red, but were 

shown they were incorrect (red X) if they selected the option that did not match on either feature. 

These familiarization trials were intended to teach participants to discriminate the choice 

alternatives; however, on these trials it was ambiguous whether number or proportion was the 

relevant stimulus dimension. Following familiarization, participants received 44 test trials made 

up of 22 Standard (repeating the 12 used as familiarization, plus 10 new trials) and 22 

Competition trials, intermixed. On Standard trials, feedback was the same as for familiarization. 

On Competition trials, feedback always indicated a correct response (i.e., a green check) 

regardless of selection (number or proportion of red). Thus, we were critically interested in 

which option participants selected on Competition trials. That is, which feature would they rely 

upon when number and proportion conflict with each other?  

Figure 2: Procedure set up for each Experiment. Panel A: Spontaneous Match-to-Sample (MTS) task without a 

Probe from Experiment 1. Panel B: Delayed MTS task from Experiment 2, with the Probe occurring before 

displaying the sample. Panel C: Delayed MTS from Experiment 2, with the Probe occurring after displaying 
the sample. Panel D: Delayed MTS task from Experiment 3, with the Probe always before the sample and with 

three Probe options.  
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After the spontaneous MTS task, participants were shown an empty text box on the screen 

and asked to briefly explain what information they used to choose which picture matched. We 

collected strategy reports to investigate whether participants had explicit awareness of the 

strategy they were using, given the ambiguity of the task demands. In other words, given that this 

task did not involve learned or required symbolic strategies, the strategy reports allow us to 

investigate adults’ interpretation of the task demands and attention to different features, rather 

than their ability to execute a specific learned strategy. For example, it may be that adults do 

show a preference for selecting one match over the other (e.g., choosing number), but that they 

are not explicitly aware of that strategy and are not able to articulate it. On the other hand, it may 

be that numerical information is so salient that adults show both a behavioral preference and an 

explicit awareness of this behavior.  

Finally, given the relation between attention to proportional information and later fraction 

abilities in children (McMullen et al., 2014, 2016), we included measures of symbolic numeracy 

in both Experiments 1 and 2 (Fagerlin et al., 2007; Weller et al., 2013) to explore this link in 

adults. We were interested in whether adults who are more comfortable processing symbolic 

proportion and numeracy in decision making and real-life scenarios (as measured by the 

numeracy scales) would also be more likely to show better proportional reasoning abilities in this 

non-symbolic context, and less likely to show numerical interference. However, these results 

were inconsistent across studies and small and so we report the results of these measures 

(including a meta-analytic approach) only within the Supplementary Materials. 

Materials, data, and analysis code from all the experiments reported here and in 

Supplemental Materials are available on the Open Science Framework (OSF) project page 

(https://osf.io/56r8z/). 
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Results and Discussion 

Spontaneous MTS task 

Participants completed the Familiarization Standard trials (M = 0.85) and the Test 

Standard trials (M = 0.90) with high accuracy. Participants who scored below 75% on the Test 

Standard trials (n=5), suggesting they were not reliably able to isolate either number or 

proportion as being relevant during familiarization and did not learn either matching rule, were 

excluded from analyses. Thus, we looked at performance on the Competition test trials for the 

remaining 55 participants. On average, participants chose the option that matched the sample 

stimulus number on 68% of the Competition trials, which was significantly greater than chance 

(50%): t(54) = 5.39, p < 0.001. Furthermore, 40 out of the 55 participants preferred number 

(choosing number more than 50% of the time), which is significantly more than half of the 

participants (Binomial p = 0.001). Thus, overall, there was a significant preference to attend to 

numerical information rather than proportional information, suggesting that in the absence of 

other quantitative cues or direct instruction, numerical information may be more salient than 

proportional information.  

Explicitly Reported Strategies 

Responses were coded based on whether they mentioned strategies of interest. Notably, 

participant responses could have been coded as falling within more than one relevant category 

(thus, percent of participants is included to provide a better sense of the popularity of each 

response, but these values will add up to more than 100%). Forty-one people (68%) reported at 

least one strategy that was based on absolute number: 32 (53% of total participants) reported 

attending to the number of red circles, 8 (13%) reported attending to the number of blue circles, 

6 (10%) reported attending to the color that contained the smallest number of circles, and 8 
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(13%) reported attending to the total number of circles. In contrast, 19 people (32%) reported 

using a strategy that involved the relation between red and blue circles and 16 people (27%) 

reported using idiosyncratic spatial cues, such as the density of the dots, the shape or outline of 

the overall set of dots, or the location of a specific dot, although none of these spatial cues were 

reliable for selecting the correct match. Lastly, 3 participants (5%) reported a strategy that could 

not be coded into one of these categories (e.g., “I picked the one that matched”).   

We then compared performance on the spontaneous MTS of those classified as having 

used a numerical strategy, a relational strategy, and a spatial strategy (as a relatively commonly 

used, but not reliable or useful, strategy). We analyzed each type of strategy by comparing those 

who did and did not report using a given strategy, separately2.  Those who reported a number 

strategy were significantly more likely to select the number response on Competition trials (n = 

41, M = 0.74) than those who did not report using a number strategy (n = 19, M = 0.52), t(58) = -

3.66, p < 0.001, Cohen’s d = 1.02, though there was not a significant difference in performance 

on the Standard trials (MNumber Strategy = 0.91, MNo number strategy = 0.88), t(58) = -0.95, p = 0.343, 

Cohen’s d = 0.27. Conversely, those who reported a relational strategy (a different but 

potentially overlapping subset from above; n=19) were less likely to select the number response 

on Competition trials (M = 0.54) than those who did not report using a relational strategy (n = 

41, M = 0.73), t(58) = 3.1, p = 0.003, Cohen’s d = 0.84. There was a small but not significant 

difference in performance between these two groups on the Standard trials as well (MRelational 

Strategy = 0.93, MNo relational strategy = 0.88), reporting Welch’s t-test for unequal variances (variance 

test p = 0.02), t(53.5) = -1.7, p = 0.099, Cohen’s d = 0.39. Although not statistically significant, 

 
2 Note that because adults could be categorized into multiple strategy categories, they may be 

included in multiple analyses as using that strategy. Analyses that directly compare those who 

only reported a numerical strategy and those who only reported a proportional strategy lead to 

very similar conclusions and are reported in Supplemental Materials. 
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this pattern might suggest that using a relational strategy is a more advanced or more reliable 

strategy, such that those who reported using it were better able to make the correct match, even 

when other strategies were possible. Lastly, those who reported using a spatial strategy (n=16) 

did not significantly differ on the Competition trials from those who did not (n=44; Mspatial = 

0.61, Mnot-spatial = 0.69), t(58) = 1.2, p = 0.241, Cohen’s d = 0.35. However, they did perform 

significantly worse on the Standard trials (Mspatial = 0.79, Mnot-spatial = 0.94), reporting Welch’s t-

test because of a significant difference in variances (p < 0.001), t(16.98) = 3.72, p = 0.002, 

Cohen’s d = 1.54. Thus, those who reported idiosyncratic spatial strategies performed worse 

overall on non-competition trials, suggesting (in line with their own self reports) that they were 

less able to reliably isolate either relevant quantity dimension.  

Taken together, these findings suggest that adults tend to spontaneously attend to 

numerical information rather than proportional information and their explicit self-reports of their 

strategies seem to correspond with their actual performance. Those who reported a number 

strategy were more likely to match on number (compared to those who did not report using a 

number strategy) and those who reported a relational strategy were less likely to match on 

number (compared to those who did not report using a relational strategy). Consequently, these 

findings provide support for the hypothesis that numerical information carries greater saliency 

than proportional information in the absence of a cue to attend to one or the other. 

Experiment 2 

 Experiment 1 provides evidence that when presented with non-symbolic dot arrays with 

two features (i.e., red and blue dots) in an ambiguous task, adults are more likely to match on 

numerical information than proportional information. In Experiment 2, we more directly 

manipulated the task to investigate differences in saliency, automaticity of encoding, and 



MATCHING NUMBER AND PROPORTION 

 

20 

effortful processing costs by directing adults’ attention to numerical or proportional features 

using a delayed MTS task3.  

Method 

Participants 

The sample consisted of 60 undergraduate college students (Mage = 19.3, range: 18 years to 

24 years, nfemales = 40, nmales = 20) who completed a delayed MTS task. Based on relatively large 

effects found in our prior experiment (Experiment S1) for the significant probe and trial type 

effects (i.e., ηp > 0.2; reported in Supplemental Materials), we selected our sample size to have at 

least 80% power for detecting medium sized effects on the central within-subject effects 

(sensitivity analyses in G*Power; Faul et al., 2007). Participant recruitment procedures were the 

same as in Experiment 1.  

Stimuli 

 As in the spontaneous MTS in Experiment 1, each trial in the delayed MTS task consisted 

of three dot arrays: a sample stimulus (the initial stimulus, to which participants needed to 

identify a match) and two choice stimuli presented simultaneously as response options. In 

addition, on each trial, participants were shown a probe, which indicated whether the relevant 

dimension to attend to was the number of red dots (indicated by a “#” sign that was 1.9cm by 

3.8cm), or the proportion of red dots (indicated by a “%” sign that was 3.8cm by 3.8cm)4.  

 
3 Experiment 2 is a more careful replication of an initial experiment (Experiment S1). The 

pattern of findings is nearly identical, with only one difference where Experiment S1 showed a 

small interaction that is not significant in Experiment 2. Thus, Experiment S1 is only reported in 

Supplemental Materials.  
4 There is substantially less research on people’s understanding of percentages, relative to 

fractions or whole numbers (see Tian & Siegler, 2018 for a review), and some have suggested 

that percentages may be an important bridge between whole numbers and fractions (e.g., Moss & 

Case, 1999; Sidney et al., 2021). Thus, in the current study we rely on percentage symbols to 

prompt attention to proportional information (in Experiments 2 and 3), but it is an open question 
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There were three different types of trials in the delayed MTS task, presented in a random 

order: Standard trials, Competition trials, and Simple-Match trials. Standard trials (Figure 1, 

Panel A) and Competition trials (Figure 1, Panel B) were similar to Experiment 1. On Simple-

Match trials (Figure 1, Panel C), one choice alternative matched the sample on only the relevant 

dimension (indicated by the probe), but not the other (i.e., it matched on either the number of red 

dots or on the proportion of red dots, but not both) and the other choice alternative did not match 

the sample on either dimension. For Simple-Match trials, the average ratio between the number 

of red dots in the two choice alternatives was approximately 1.9 (range: 1.29 to 3) and the 

average ratio between the proportion of red dots in the two choice alternatives was 

approximately 1.9 (range: 1.29 to 3). The Standard and Competition stimuli were identical to 

those used in Experiment 1, though, as noted, participants were cued to respond with a probe that 

prompted attention to number or proportion.  

Procedure 

The delayed MTS task consisted of two blocks of trials (Probe-Before and Probe-After 

blocks), with the order counterbalanced across participants. In the Probe-Before block (Figure 2, 

Panel B), participants first saw a grey probe screen with either a number sign (“#”) or a percent 

sign (“%”) in the middle of the screen (1000ms), followed by a sample stimulus (1000 ms), a 

visual mask (1000ms), and two arrays as choice alternatives (visible until response selection). In 

the Probe-After block (Figure 2, Panel C), the temporal locations of the visual mask and the 

probe screen (“#” or “%”) were swapped, such that the participant saw the visual mask first, 

followed by the sample stimulus, followed by the probe screen, followed by the two choice 

arrays.   

 

of how this symbolic operationalization of proportion would impact adults’ performance, an 

issue we return to in the General Discussion.         
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In both conditions, participants were instructed that on the probe screen, the number sign 

indicated they were to select the choice alternative that matched the sample stimulus on the 

number of red dots and the percent sign indicated they were to pick the choice alternative that 

matched the sample in terms of the percentage of red dots (out of the total). Participants selected 

their response by pressing the right or left arrow on the keyboard to select the right or left choice 

alternative, respectively.  

Each block contained 12 practice trials (4 of each trial type, intermixed) and 66 test trials 

(22 of each trial type, with an equal number of each probe, all intermixed). Participants received 

accuracy feedback during the practice problems (a green check when they selected the response 

that correctly matched the probe and a red X when they selected the response that did not match 

the probe, displayed for 1000ms), but did not receive any feedback on the test trials. 

Data Treatment 

 Accuracy (proportion correct) and reaction time (RT) were recorded on the delayed MTS 

task. Accuracy was the primary dependent variable, but a brief summary of RT analyses are also 

provided, as they typically showed similar results (although, major discrepancies are discussed 

and a full report of the RT results can be found in Supplementary Materials). Only RTs from 

correct trials and those within three standard deviations of that individual’s mean RT on that trial 

type was used. Outliers at the group level were defined as individual means that were outside 

three standard deviations of the group mean for that cell (i.e., trial type x probe type x probe 

timing combination) and they were replaced with the next highest observed value within three 

standard deviations of the mean for all data in that cell (1.7% of accuracy data; 1.3% of RT data). 

The pattern of results is the same when these outliers are not replaced. Additionally, when a log 

transformed proportion correct is used instead to adjust for the distribution of proportion correct 
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scores (as discussed in Collett, 2002; Cox & Snell, 1989), the same pattern of results is found as 

when untransformed proportion correct is used. 

All analyses were done in R (version 3.5.1; R Core Team, 2020) using RStudio (R Studio 

Team, 2016) with the packages dplyr, tidyr, readxl, and ggplot2 from the tidyverse (for data 

organization and visualization; Wickham, 2017), as well as ez (for ANOVA analysis; Lawrence, 

2016), effsize (for effect size calculations; Torchiano, 2018), and psychReport (for partial eta-

square calculations; Mackenzie, 2018). 

Results and Discussion 

We analyzed performance on the delayed MTS task using a 2 x 3 x 2 x 2 mixed-measures 

ANOVA, with Probe Type (# or %) X Trial Type (Standard, Simple-Match, Competition) X 

Probe Timing (before or after sample) as repeated measures and Block Order (Probe Before 

block first or Probe After block first) as a between-subjects factor, and with proportion correct as 

the primary dependent variable (see Figure 3). When a violation of sphericity was detected, 

Greenhouse-Geisser correct p-values are reported.   
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First, to investigate whether there is evidence of differences in the automaticity of 

encoding number and proportion, we examined whether Probe Timing impacted performance. If 

number and proportion are both automatically encoded, there should not be a cognitive cost for 

simultaneously encoding both stimulus dimensions. That is, performance on Probe-Before trials, 

in which participants know before seeing the sample whether to encode number or proportion, 

should be comparable to Probe-After trials, in which they do not know and thus must encode 

both. On the other hand, if one (or both) of these quantities is not automatically encoded, then we 

would expect there to be a cognitive cost to encoding both quantitative dimensions. As such, 

performance on Probe-After trials should suffer relative to Probe-Before trials. Furthermore, if 

number and proportion are encoded differently, then we would expect the impact of the temporal 

Figure 3: Proportion correct from Experiment 2 on each trial type (x-axis) and each 

probe (left, light grey bars = number of red; right dark grey bars = proportion) on the 

probe before block (left panel) and the probe after block (right panel). Points are mean 

performance, error bars are standard error, kernel density violin plots display the 

distribution of the underlying data. 

Figure 3: Proportion correct from Experiment 2 on each trial type (x-axis) and each 



MATCHING NUMBER AND PROPORTION 

 

25 

location of the probe (Probe-Before vs. Probe-After trials) to differ when matching on number 

versus proportion.  

The ANOVA revealed a small but not significant effect of Probe Timing, F(1,58)=3.70, 

p=0.059, ηp
2 =  0.06 (MProbe Before = 0.86, MProbe After = 0.84), indicating that participants 

performed slightly better when they knew ahead of time which quantitative dimension to attend 

to than when they did not know and were thus required to attend to both dimensions. However, 

there was not a significant interaction between Probe Timing and Probe Type, F(1,58)=0.98, 

p=0.325, ηp
2 =  0.02, suggesting that this small main effect did not vary for number versus 

proportion. Analyses also revealed a small but not significant Block Order X Probe Timing 

interaction, F(1,58)=3.47, p=0.068, ηp
2 =  0.06; however, because this effect did not involve 

Probe Type (i.e., # or %) and likely reflected small practice effects, it was uninformative for the 

current study. There were no other significant interactions involving Probe Timing (all p’s > 

0.1).  

 Second, to investigate the effect of basic processing differences and the possible added 

effect of response competition, we consider the effects of Trial Type and Probe Type. If number 

and proportion compete during decision-making, then we would expect performance on trials in 

which the incorrect response option presents competing quantitative information (Competition 

trials) to be worse than on trials in which the incorrect response option does not present 

competing information (Simple Match trials), regardless of the timing of the probe. Additionally, 

however, if there are general differences in the ease of processing numerical vs. proportional 

information, then we may also see differences between numerical and proportional matching in 

the absence of competing response options (Simple Match and Standard trials).  
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The analysis revealed a main effect of Probe Type, F(1,58)=121.3, p <0.001, ηp
2 =  0.7, a 

main effect of Trial Type, F(2,116)=85.5, p <0.001, ηp
2 =  0.6, and a Probe X Trial type 

interaction, F(2,116)=26.7, p <0.001, ηp
2 =  0.3. Thus, we examined the effect of Probe Type (# 

or %) within each trial type separately. For each Trial Type, accuracy on number trials was 

higher than that of proportion trials: Standard Trials: MNumber = 0.94, MProportion = 0.90; t(59) = 

2.6, p = 0.013, Cohen’s d = 0.33; Simple-Match Trials: MNumber = 0.90, MProportion = 0.76; t(59) = 

7.5, p < 0.001 Cohen’s d = 0.97; Competition Trials: MNumber = 0.89, MProportion = 0.69; t(59) = 

10.4, p < 0.001, Cohen’s d = 1.3. The effect of Probe Type even on Simple-Match trials suggests 

there are differences in processing number and proportional information at even a more basic 

processing level, when neither response competition nor taxing task demands are present. 

However, beyond this general processing difference, the interaction between Probe Type and 

Trial Type suggests that this numerical advantage varies across trial types. Thus, to investigate 

the added impact of response competition, we compared performance in the absence of 

competition (Simple-Match trials) to performance in the presence of response competition 

(Competition), when matching on both number and proportion. When matching on proportion, 

people performed significantly worse when a numerical response option was available 

(Competition Trials) than when one was not (Simple Match trials), p < 0.001, Cohen’s d = 0.6. 

However, the same difference was not significant when matching on number, p = 0.542, Cohen’s 

d = 0.08. Thus, we see evidence for both hypothesized effects. There was a difference in 

performance when matching on numerical vs. proportional information in the absence of 

response competition, and this was further exacerbated in the presence of response competition, 

driven by an additional cost to proportional matching in the presence of a numerical option but 
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not numerical matching in the presence of a proportional option. No other effects in the overall 

ANOVA were significant (all p’s>0.1). 

 The pattern above is largely replicated when the same repeated measure ANOVA is run 

with RT as the dependent variable. As with accuracy, there was a main effect of Probe Type, 

F(1,58)=117.7, p < 0.001, ηp
2 =  0.7, Trial Type, F(2,116)=13.9, p < 0.001, ηp

2 =  0.2, and a 

Probe Type by Trial Type interaction, F(2,116)=24.1, p < 0.001. ηp
2 = 0.29. In particular, adults 

were significantly faster on number trials than proportion trials in all trial types: Standard trials: 

MNumber = 1232 ms, MProportion = 1524 ms; t(59) = 8.2, p <0.001, Cohen’s d = 1.1; Competition 

trials: MNumber = 1236 ms, MProportion = 1807 ms; t(59) = 10.1, p < 0.001, Cohen’s d = 1.3; Simple-

Match trials: MNumber = 1195 ms, MProportion = 1803 ms; t(59) = 9.5, p < 0.001, Cohen’s d = 1.2. 

However, RT analyses differed from accuracy analyses in that the interaction is not driven by an 

additional cost to numerical interference during proportional reasoning; neither matching on 

number nor on proportion showed a difference in reaction time across the Simple-Match and 

Competition trial types (number: p = 0.083, d = 0.12; proportion: p = 0.914, d = 0.007). Thus, 

RT analyses replicate an overall performance difference between number and proportion trials 

with proportional information requiring more time to process than number across all three trial 

types, potentially due to a computational cost. However, unlike accuracy there was not an added 

speed cost introduced by a competing response option, suggesting that the interference or 

competition during decision-making may not be as evident in RT.5  

Overall, the results of Experiment 2 provide evidence for at least two of our hypothesized 

mechanisms: interference from competing numerical information in the subset and more effortful 

 
5 Reaction time data also revealed several small effects involving Block Order and Probe 

Timing; however, these interactions were small and difficult to interpret and so are not reported 

here (see Supplemental Materials for the full analysis and discussion). 
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processing of proportional information than subset numerical information. In terms of response 

competition, when matching proportion, accuracy of performance (but not reaction time) was 

worse when a numerical response option was available (Competition Trials), relative to when a 

numerical response was not available (Simple Match), aligning with predictions about 

competition between number and proportion during the decision-making process. Importantly, 

the converse was not true; that is, proportional information did not appear to interfere with 

numerical judgments during decision-making (that is, performance on Competition and Simple 

Match trials was not significantly different when matching on number). Moreover, even in the 

absence of response competition, we find that responding based on proportional information took 

longer and was less accurate than matching on the subset numerical information. Thus, it may be 

that proportional information is more effortfully processed than numerical information, resulting 

in longer reaction times and more error-prone responding.  

On the other hand, we did not find evidence for differences in encoding automaticity 

between number and proportion. That is, we did not find a differential effect of Probe Timing on 

performance across number and proportion trials, such that participants benefited from knowing 

which dimension to attend to before seeing the sample stimulus equally across the two types of 

trials. This finding might suggest that both number and proportion are encoded automatically to 

the same extent. It is also possible, however, that these patterns are attributable to characteristics 

of our procedure. For example, perhaps the duration of the sample stimulus presentation was too 

brief to allow an earnest opportunity to encode both number and proportion even when 

participants knew in advance to which dimension to attend, or, alternatively, was sufficiently 

long that they were able to actively encode both number and proportion information as 

successfully as they were able to encode either independently. In either case, this would result in 
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little to no difference in the prompt timing conditions.   

Although we do see evidence of interference from competing numerical information and 

more effortful processing of proportional information than numerical information, the numerical 

information was always operationalized as the number of red dots – a numerical subset of the 

total information. This numerical information differs from proportional information in at least 

two ways: (1) it is necessarily a smaller number of items, since it is a numerical subset, and (2) it 

requires only attending to a single feature (the red items) rather than computing over two features 

(red and blue dots). Thus, in Experiment 3, we investigated whether the two mechanisms found 

to play a role in the tradeoff between proportion and a numerical subset– the cognitive 

processing cost of proportional information and numerical interference – also apply relative to 

the total number of items present (the superset), which requires attending to a larger number and 

computing over two features.  

Experiment 3 

Although there were other numerical aspects of the display (e.g., the number of blue dots 

or the total number of dots) available in Experiments 1 and 2, and some adults in Experiment 1 

did report spontaneously using this other numerical information (13% of adults in Experiment 1 

reported attending to the total number of dots), both our operationalization of numerical 

interference and our measure of cognitive processing cost compared proportional information 

only to the numerical subset, in keeping with prior emphases on numerical subset information  

(Boyer et al., 2008; Fabbri et al., 2012; Hurst & Cordes, 2018a). Thus, to investigate whether the 

total number of dots interferes with proportional information to the same extent and via the same 

mechanisms as the subset-numerical interference found in Experiment 2, we used the same 

delayed MTS paradigm but included trials that involved matching on the total number of dots as 
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well as the number of red dots and the proportion of red dots. Furthermore, given the small 

and/or non-significant effects of the timing of the probe in Experiment 2, we removed this 

manipulation and used only Probe-Before trials.  

Method 

Participants 

 The sample consisted of 50 undergraduate college students (Mage = 18.96, range: 18 years 

to 22 years; 30 women, 18 men, and 2 with missing gender data) who participated for partial 

course credit in our campus laboratory6. This sample provides sensitivity to detect an effect size 

of around f = 0.2 (considered a medium effect) with 80% power on our central repeated measure 

ANOVA (Faul et al., 2007). The rest of our participant recruitment procedures were similar to 

Experiment 2.  

Stimuli 

 The basic design of the stimuli was the same as Experiment 2, but the specific stimuli 

were modified to accommodate manipulation of a third feature, the total number of dots, in 

addition to the number of red dots and the proportion of red dots. The delayed MTS task 

consisted of the same three types of trials in Experiment 2: standard trials, simple-match trials, 

and competition trials. On Standard trials (Figure 1, Panel A) one of the choice alternatives 

matched the sample stimulus on the number of red dots, the total number of dots, and the 

proportion of red dots (i.e., was exactly the same except rearranged). The other choice alternative 

did not match the sample stimulus on any of these three features. On Competition trials (Figure 

 
6 We had planned to collect 60 participants, as in Experiments 1 and 2. However, the COVID-19 

pandemic resulted in early termination of data collection. Thus, we report a sensitivity analysis 

for this new sample size. Although data collection was terminated earlier than expected, it was 

terminated for non-data driven reasons, and thus should not increase our likelihood of a Type 1 

error.  



MATCHING NUMBER AND PROPORTION 

 

31 

1, Panel B), there were two kinds of trials: Subset vs. Proportion Competition and Total vs. 

Proportion Competition. Subset vs. Proportion Competition trials were identical to 

Competition trials of Experiment 2: one of the choice alternatives matched the sample on the 

number of red dots (but not the proportion of red dots or the total number of dots) and the other 

choice alternative matched the sample on the proportion of red dots (but not on the number of 

red dots or the total number of dots). On the Total vs. Proportion Competition trials, one of the 

choice alternatives matched the sample on the total number of dots (but not on the proportion or 

number of red dots) and the other choice alternative matched the sample on the proportion of red 

dots (but not on the total number of dots or the number of red dots). On Simple-Match trials 

(Figure 1, Panel C) one choice alternative matched the sample on only the relevant dimension 

(i.e., the one being probed on that trial), but not the other dimensions, and the other choice 

alternative did not match the sample on any of the three dimensions. 

 For all stimuli, the number of dots ranged from: 1 to 24 for red dots, 1 to 24 for blue dots, 

and 3 to 30 for total number of dots and the proportion of red dots (out of the total) ranged from 

0.1 to 0.94.  The average ratio (larger value / smaller value) between the number of red dots 

displayed on each of the two choice alternatives ranged from 1.1 to 4.5, with an average ratio of 

around 2 in each trial type (Standard and Simple-Match trials: M = 2.1; Competition trials: M = 

2). The average ratio between the total number of dots in each of the options ranged from 1.2 to 

4.5, with an average ratio of around 2 in each trial type (Standard Trials: M = 2.1; Simple-Match: 

M = 1.99; Competition trials: M = 2). The average ratio between the proportion of red dots in 

each of the options ranged from 1.25 to 3.5, with an average ratio of around 2 in each trial type 

(Standard and Total vs. Proportion Competition: M = 2; Simple-Match and Subset vs. Proportion 

Competition: M = 1.9) 
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Procedure 

The delayed MTS task was programmed and administered using PsychoPy3 (version 

3.2.4; Peirce et al., 2019). Given the small and not significant differences based on the location 

of the probe in Experiment 2, participants in Experiment 3 only completed a single block of trials 

with the probe always occurring before the sample stimulus (see Figure 2, Panel D) and did not 

complete the numeracy task. Thus, the procedure matched the Probe-Before block of Experiment 

2. The primary difference was that there were three possible probes: the number of red dots 

(prompted by: “# red”), the total number of dots (prompted by: “# total”), and the proportion of 

red out of the total (prompted by: “% red/total”).  

Participants completed 18 practice trials (3 of each type for each probe) with accuracy 

feedback and 110 test trials without feedback. The test trials were comprised of 33 Standard 

trials (11 for each probe), 33 Simple Match trials (11 for each probe), and 44 Competition trials. 

For the Competition trials, 22 were Proportion vs. Subset (11 with the % probe and 11 with the # 

red probe) and 22 were Proportion vs. Total (11 with the % probe and 11 with the # total probe). 

The specific probe that was paired with each trial was randomly determined across participants, 

within the constraints described above about the number of trials for each probe. The rest of the 

procedure was the same as Experiment 2.  

Data Treatment 

 As in Experiment 2, accuracy (proportion correct) and reaction time (RT) were recorded. 

Accuracy was the primary dependent variable and RT analyses are also presented to provide 

different insight. Only RTs from correct trials and those within three standard deviations of that 

individual’s mean RT on that trial type were used. Additionally, the same pattern of results 

emerged when a log transformed proportion correct was analyzed to adjust for the distribution of 
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proportion correct scores (as discussed in Collett, 2002; Cox & Snell, 1989). Outliers at the 

group level were determined as in Experiment 2 (2% of accuracy data; 1.2% of RT data). The 

pattern of results is the same when these outliers are not replaced, with one exception noted 

below. All analyses were done as in Experiment 2.  

Results and Discussion 

 Using the same analytical approach as Experiment 2, we compared performance across 

Probe and Trial Types. However, all probes and trial types could not be included in the same 

analysis because of the nature of the stimuli and experiment design (i.e., the standard and simple 

match trials only have one set of proportion trials, but the competition trials necessarily have two 

separate sets of proportion trials). Thus, we first compared adults’ performance with proportional 

information to their performance matching on subsets (i.e., the number of red), as a replication of 

Experiment 2. Then, we compared adults’ proportional matching to their performance matching 

the total number. Thus, the data from the Standard and Simple Match trials with the proportion 

probe are identical across the two analyses but are compared to different types of numerical 

trials. Figure 4 displays accuracy (left figure) and reaction time (right figure) for all trial types 

and probes.  
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Subset versus Proportion  

 First, we used a 2 x 3 repeated measures ANOVA with Probe (Number Red, Proportion) 

and Trial Type (Standard, Simple-Match, Competition) as repeated measures and proportion 

correct as the dependent variable. Replicating Experiment 2, there was a significant main effect 

of Probe, F(1,49)=165.3, p < 0.001, ηp
2 =  0.77, a main effect of Trial Type, F(2, 98)=51.5, p < 

0.001, ηp
2 =  0.5, and a Probe x Trial type interaction, F(2, 98)=38.6, p < 0.001, ηp

2 =  0.4. 

Accuracy was higher when matching on the number of red than on proportion on the Simple 

Match trials, MNumber = 0.93, MProportion = 0.73; t(49) = 8.5, p < 0.001, d = 1.5, and Competition 

trials, MNumber = 0.92, MProportion = 0.59; t(49) = 10.3, p < 0.001, d = 1.99, but not on Standard 

trials: MNumber = 0.92, MProportion = 0.89; t(49) = 1.4, p = 0.171, d = 0.22. Thus, as in Experiment 

2, the difference in performance on proportion probe Simple-Match trials and number probe 

Simple-Match trials (in the absence of competition) suggests that proportional matching is 

Figure 4: Proportion Correct (Panel A, left) and Average Reaction Time (Panel B, right) across all 

trial types (x-axis) and all three probes for Experiment 3. Points are the mean, error bars are 

standard errors, and kernel density violin plots show the distribution of the underlying data. 



MATCHING NUMBER AND PROPORTION 

 

35 

generally more error-prone than number matching. Furthermore, to investigate whether the 

interaction between Trial Type and Probe Type stems from added difficulty with proportional 

matching in the presence of a competing response option, we compared performance on the 

Simple Match and Competition trials for number and proportion separately. Indeed, as in 

Experiment 2, there was a significant difference between Competition and Simple-Match trials 

when matching on proportion of red, p < 0.001, d = 0.78, but not when matching on number of 

red, p = 0.805, d = 0.03.   

 Thus, replicating Experiment 2, we find that participants were more accurate when 

matching based on number in the relevant subset than based on proportion – consistent with 

proportional information requiring more effortful processing. Notably, unlike Experiment 2, we 

did not find this difference in the Standard trials, however, suggesting that the effect may be 

much smaller and less robust when an exact match on multiple features is possible. Moreover, 

we again found that information about the number of red dots – the numerator – interfered with 

adults’ ability to match proportional information at the time of decision-making, over and above 

processing differences in the absence of competition, but proportional information did not show 

a similar interference on numerical judgments.  

 The same overall pattern was found with response time as the dependent measure, with a 

significant main effect of Probe, F(1,49)=77.9, p < 0.001, ηp
2 =  0.61, Trial Type, F(2, 98)=5.8, p 

= 0.004, ηp
2 =  0.1, and a Probe x Trial Type interaction, F(2, 98)=14.6, p < 0.001, ηp

2 =  0.22. 

Matching on proportion was significantly slower than matching on number across all three trial 

types: Standard trials: MNumber = 1396ms, MProportion = 1693ms; t(49) = 3.8, p < 0.001, d = 0.4; 

Simple Match trials, MNumber = 1303ms, MProportion = 2076ms; t(49) = 7.0, p < 0.001, d = 0.87; 

Competition trials, MNumber = 1273ms, MProportion = 2128ms; t(49) = 8.5, p < 0.001, d = 0.88. 
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However, there was not a significant difference between the Simple-Match and Competition 

trials when matching on number of red, p = 0.429, d = 0.07, or when matching on proportion of 

red, p = 0.583, d = -0.05, suggesting there was not an added time cost to proportional matching 

in the presence of response competition.   

Thus, again replicating RT analyses from Experiment 2, numerical information was 

processed faster than proportional information, consistent with the proposal that proportional 

information may require additional processing or computational time than numerical 

information. However, there was not an added speed cost to the competition trials, meaning that 

response competition was not evident in terms of RT.  

Total Number versus Proportion  

 Next, we used the same 2 x 3 repeated measures ANOVA with Probe (Total Number, 

Proportion) and Trial Type (Standard, Simple-Match, Competition) as repeated measures, but on 

those trials that involved matches on total number (instead of number of red). Note that the 

Standard and Simple-Match proportion trials were identical to those analyzed above but were 

used here to compare to the total number probe. Descriptive data will be repeated as needed for 

ease of comparison. There was a significant main effect of Trial type, F(2, 98)=31.8, p < 0.001, 

ηp
2 =  0.39, and a significant Trial type x Probe interaction7, F(1,49)=3.67, p = 0.029, ηp

2 =  0.07, 

but, unlike previous findings involving subsets, not a significant main effect of Probe, 

F(1,49)=0.53, p = 0.471, ηp
2 =  0.01. In contrast to comparing proportion to the numerical subset, 

there was not a significant difference in accuracy when matching on proportion vs. the total 

number in any of the three trial types: Standard trials: MNumber = 0.86, MProportion = 0.89; t(49) = 

 
7 This interaction was not robust to outlier treatment and is not significant when outliers are not 

replaced, F(1,49) = 3.0, p = 0.054, ηp
2 =  0.06. However, this does not dramatically change the 

interpretation, as the interaction does not stem from the pattern of behavior we would expect 

from response competition.  
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1.9, p = 0.062, d = 0.3; Simple Match trials, MNumber = 0.75, MProportion = 0.73; t(49) = 0.56, p = 

0.579, d = 0.08; Competition trials, MNumber = 0.77, MProportion = 0.71; t(49) = 1.89, p = 0.065, d = 

0.34. Thus, in contrast to the number of red items, reasoning about the total number of items was 

not more accurate than reasoning about proportion. Furthermore, we also did not see evidence of 

added difficulty from response competition. That is, performance was not significantly different 

between the Simple-Match and Competition trials when matching on the total number of dots, p 

= 0.452, d = - 0.1, or the proportion of red dots, p = 0.389, d = 0.1. Thus, in contrast to the 

pattern found for Subset versus Proportion trials, we did not find evidence to suggest that total 

number is processed more accurately than proportion, nor that the total number of dots interfered 

with adults’ ability to match on proportional information at the time of decision making. 

 When looking at RT, there was a main effect of Trial Type, Mstandard = 1544ms,  Msimple = 

1830msms, Mcompetition = 1800ms,  F(2, 98)=10.0, p <0.001, ηp
2 =  0.17, with Standard trials being 

significantly faster than Competition and Simple-Match trials, ps < 0.001, ds > 0.3, which were 

not significantly different from each other, p = 0.668, d = 0.03. Additionally, there was a 

significant main effect of Probe, F(1, 49) = 44.3, p < 0.001, ηp
2 =  0.47, such that matching on 

proportion, M = 1935ms, took longer than matching on total number, M = 1514ms, again 

consistent with more effortful processing of proportional information relative to numerical 

information. However, the interaction between Trial Type and Probe Type was not significant, 

F(2, 98) = 2.3, p = 0.109, ηp
2 =  0.04. 

 Taken together, these findings suggest that the total number of dots did not compete with 

proportional information at the time of decision making (in terms of either accuracy or RT), but 

proportional information did require more processing time, resulting in longer reaction times, 

than matching on the total number of dots, consistent with the pattern found for the numerical 
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subset trials as well. Consequently, the findings comparing a numerical subset to proportion 

replicate Experiment 2, providing support for two of our hypothesized mechanisms: cognitive 

cost to proportional reasoning (in terms of accuracy and reaction time) and interference during 

decision making. However, when comparing total number to proportion we only find support for 

one hypothesized mechanism, a cognitive processing cost of proportion versus total number, and 

this cost was only apparent in terms of processing time and did not lead to a cost in performance 

accuracy.  

  Across Study Meta-Analysis 

 When comparing proportion versus a numerical subset, two of our target mechanisms 

(processing costs and response competition), were directly tested in multiple Experiments: 

Experiment 2, 3, and S1. Thus, to give a more robust estimate of the size of these effects we 

applied meta-analytic methods using the metafor v2.4 package in R (Viechtbauer, 2010), using 

change score standardized mean change as our effect size (given the repeated measures design) 

and random effect models with REML (although, the resulting estimates are almost identical 

when a fixed effects model is used, given that these experiments come from a single paradigm 

and lab environment). Forest plots are available in Supplemental.  

To estimate the difference in processing cost between the numerical subset and 

proportion, we compared the simple match proportion trials and simple match numerical subset 

trials. There was a significant effect of proportion correct, dRM = 0.91, 95% CI [0.71, 1.11], p < 

0.001, with relatively low heterogeneity across experiments I2 = 27%, Q(df = 2) = 3.07, p =0.22. 

There was also a significant effect of reaction time, dRM = -1.1, 95% CI [-1.3, -0.90], p < 0.001, 

with relatively low heterogeneity across experiments I2 = 0%, Q(df = 2) = 0.68, p =0.71.  
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To estimate response competition in proportional matching, we compared the simple 

match proportion trials to the competition proportion trials. There was a significant interference 

effect in terms of proportion correct, dRM = 0.53, 95% CI [0.38, 0.69], p < 0.001, with low 

heterogeneity, I2 = 0%, Q(df = 2) = 1.66, p = 0.44. However, there was a much smaller and still 

not significant interference effect in terms of RT, dRM = -0.12, 95% CI [-0.26, 0.02], p = 0.10, 

with low heterogeneity, I2 = 0%, Q(df = 2) = 1.70, p = 0.43. 

General Discussion 

Across three experiments, we investigated potential explanations for the often reported 

finding of lower behavioral performance on proportional reasoning tasks compared to numerical 

tasks by investigating how well adults match discrete quantity displays based on either absolute 

number or relative proportion. Importantly, we manipulated whether and when participants’ 

attention was explicitly directed toward the relevant information and the structure of the choice 

alternatives to investigate four potential mechanisms: (1) differences in saliency, (2) differences 

in the automaticity of encoding, (3) differences in the ease or effortfulness of processing, and (4) 

difficulty with response inhibition during decision-making. Moreover, in Experiment 3, we 

investigate whether the differences between proportion and the numerical subset found in 

Experiment 2 also apply to proportion versus the numerical total. Overall, as summarized in 

Table 2, our findings provide some evidence for three of the four mechanisms, but also suggest 

that differences between numerical and proportional information found in Experiment 2 and in 

other prior research (e.g., Fabbri et al., 2012) might be specific to differences between proportion 

and numerical information about the subset, rather than numerical information more generally. 

We discuss the first three mechanisms together, as they all consider various ways in which 

numerical information may be privileged before the response decision. Then, we discuss 
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response competition, as it arises during decision making, after encoding and processing. 

Throughout, we highlight the theoretical and methodological implications of these findings, 

given that they may only apply to some numerical information (i.e., the subset) and not others 

(i.e., the total). 

Table 2: Summary of the relevant results from each Experiment 

Testable 

Mechanism 
Specific Question 

Exp 1: 

Subset vs. 

Proportion 

Exp 2: 

Subset vs. 

Proportion 

Exp 3: 

Subset vs. 

Proportion 

Exp 3: 

Total vs. 

Proportion 

Saliency 

Are adults more likely to 

match on the number of red 

than proportion of red in the 

absence of instruction? 

Yes - - - 

Encoding 

Automaticity 

Is there a difference in the 

additional cost to performance 

when adults must encode both 

number and proportion vs. can 

focus on the relevant 

dimension only, for number 

vs. proportion? 

- No - - 

Processing 

Costs 

Is there a general cost to 

accuracy or reaction time 

when matching on proportion, 

in the absence of encoding or 

competition demands? 

- 

Yes – 

Accuracy 

& RT 

Yes – 

Accuracy 

& RT 

Partial –  

RT ONLY 

 

Meta-analysis across 

Exps 2, 3, S1: 

Yes – Accuracy & RT 

 

Response 

Competition 

Is there an additional cost to 

performance (accuracy) when 

matching on proportion in the 

presence of a numerical match 

(vs. not)? 

- 
Yes – 

Accuracy  

Yes – 

Accuracy 
No 

 

Meta-analysis across 

Exps 2, 3, S1: 

Yes – Accuracy 

 

 

Saliency, Encoding, and Ease of Processing 
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First, we found that when provided no information about what to attend to, adults 

exhibited a clear tendency to spontaneously match on numerical information more than any other 

dimension. Thus, adults were likely to prioritize numerical information about the relevant or 

salient subset over information about the relative proportion, suggesting that numerical 

information about a subset is more immediately salient and draws adults’ attention.  

Second, we experimentally manipulated whether adults knew ahead of time what 

information to attend to in order to investigate how automatically numerical and proportional 

information is encoded. Consistent with other work (Fabbri et al., 2012), we did not find large 

differences in adults’ abilities to encode numerical versus proportional information. That is, 

although performance on Probe Before trials was slightly better than performance on Probe After 

trials, this performance cost was comparable across trials in which participants were asked to 

match based on number and those in which they were asked to match based on proportion 

(Experiment 2; although see small differences in Experiment S1 in Supplemental Materials).  

Third, we further investigated the issue of effortfulness by looking at ease of processing 

more generally, beyond the encoding process. We found that matching on number, be it the 

number of red dots or the total number of dots, was significantly faster than matching on 

proportion. These findings are consistent with the possibility that processing proportional 

information requires a computation across two quantity representations in a way that matching 

on number does not. However, this processing cost of proportion only resulted in lower accuracy 

compared to numerical subset information, whereas participants were similarly accurate when 

matching on proportion and on the numerical total. 

In summary, results suggest that processing differences between proportion and subset 

numerical information are evident in terms of overall effort involved in processing, error-prone 
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responding, and in baseline differences in saliency, but are not evident at the stage of encoding 

(i.e., number does not appear to be more automatically encoded than proportional information). 

Additionally, proportional information shows some evidence of more effortful processing than 

the numerical total, but results only revealed differences in reaction time, not accuracy.8  Taken 

together, what do these patterns suggest about how adults engage with numerical versus 

proportional information? One possibility is that adults encoded multiple bits of numerical 

information (e.g., the number of red and the number of blue OR the number of red and the total), 

regardless of what information they were directed to attend to, and always computed 

proportional information from this numerical information after the initial numerical encoding. 

This explanation is consistent with the proposal that numerical information is directly abstracted 

from a display, but proportional information is tracked via a computational process involving 

numerical representations (e.g., Gallistel, 1990; Gallistel et al., 2006). That is, adults may only be 

able to represent proportion after tracking number, resulting in a computational processing cost 

evident in their reaction time. Notably, however, this is counter to other work suggesting that 

proportional information is automatically accessed and that computations are not necessary even 

for symbolic fractions (Binzak & Hubbard, 2020; Lewis et al., 2014, 2016).   

A related possibility is that numerical information is more salient and more easily 

processed because of people’s experiences with numerical information. Numerical information is 

taught earlier than proportional information (e.g., counting is learned before fractions), and 

adults’ daily experiences likely involve more instances of absolute numerical information than 

relative proportions or fractions. These privileged and frequent experiences with number, relative 

 
8 We must also note, however, that we only analyzed RTs on correct trials, which has been 

criticized as less informative than using a modeling approach that combines RTs from correct as 

well as error trials (Ratcliff et al., 2016; Ratcliff & Rouder, 1998). Features of our experimental 

design limit our ability to pursue this sort of modeling effort here. 
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to proportion, may lead people to pay more attention to numerical information or believe that in 

an experimental setting with minimal instructions, such as in the spontaneous MTS task, we (as 

experimenters) are expecting numerical-based matches. Further investigating the extent to which 

this is a top-down effect due to expectations and cognitive processing versus a bottom-up effect 

due to differences in attention allocation and perceptual features is an important next step for 

more deeply understanding the cause of these differences between numerical versus proportional 

matching performance.  

Response Competition and Interference 

 Lastly, our results provide support for the role of response competition arising from 

subset numerical information during decision-making, but not total numerical information. 

Specifically, numerical information about a relevant subset (i.e., the number of red) interfered 

with proportion matching at the time of response selection, over and above differences in 

processing in the absence of response competition. Thus, inhibiting numerical response selection 

about a salient subset when matching proportion may be particularly difficult.  

Notably, we did not find any evidence of response competition when the numerical 

response option included the same total number of dots rather than the number in the numerator-

based subset (in this case, red dots). Interestingly, this suggests that different aspects of the 

numerical information that comprise proportion may differentially interfere with proportional 

processing, such that the numerator information interferes with proportion in a way that the total 

number or denominator information does not. Given that proportional information is derived 

from the absolute numerical information, investigating how the different component parts 

interact with proportional reasoning can provide further insight into what computation might be 

occurring. For example, adults could encode the proportional information as a proportion or 
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fraction (where the numerator is the number of red units, and the denominator is the total number 

of red plus blue units) or as a ratio (where the red to blue relation is compared), and although the 

numerical information of one subset (red units) is necessary in both cases, only the former relies 

explicitly on the total number of dots. Furthermore, the fact that we only see numerical 

interference from a single subset, and not from the total numerical information, might suggest 

that the need to compute over two features (red and blue) and more information also contributes 

to the disadvantage of processing proportional information. That is, inherent to proportional 

information is the fact that in order to track it, one must track both the subset and the total 

number and properly integrate across two features, rather than focusing on a single feature. 

Therefore, it may be that this natural confound, in terms of attention allocation and the amount of 

information to attend to, explains typical numerical interference effects for numerical subsets, 

which align with these confounds (e.g., Boyer et al., 2008; Fabbri et al., 2012; Hurst & Cordes, 

2018a; current study Experiment 2), but not for the numerical total. However, the fact that 

processing proportion still takes longer than processing the total number (which includes the 

same number of items and computing over two features), suggests that this cannot be the whole 

explanation. More work is needed to further investigate this difference in interference from 

numerator numerical information and denominator numerical information and how this 

difference may inform our understanding of proportional reasoning. 

Critically, the data did not reveal any evidence of proportional information interfering 

with numerical judgments, either for the number in a subset or the number in the total. Therefore, 

although several open questions remain about how these pieces of information are integrated, our 

data make it clear that judgements about the number of red dots, the total number of dots, and the 

proportion of red dots were not equally weighted in the decision-making process, but instead that 
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numerical information about the salient and relevant subset was prioritized above proportional 

information. Future research should further investigate how all three of these pieces of 

information are represented, computed, and integrated.  

Interestingly, using exploratory correlation analyses, these data also generate hypotheses 

about how these explanations for the difference in numerical vs. proportional reasoning come 

about by suggesting that individual differences in the strength of these phenomena are related. 

Adults’ with a larger difference in performance matching on number vs. proportion, in the 

absence of competition, also showed larger numerical interference in the presence of 

competition9 – and this was true for both the numerical subset (Experiment 2: accuracy, r(58) = 

0.35, p = 0.006; RT, r(58) = 0.23, p = 0.08; Experiment 3: accuracy, r(48) = 0.37, p = 0.009; RT, 

r(48) = 0.50, p < 0.001) and the numerical total information (Experiment 3: accuracy, r(48) = 

0.42, p = 0.002; RT, r(48) = 0.44, p = 0.001). Although more experimental work is needed, this 

finding generates interesting hypotheses about the cause of numerical interference; numerical 

response competition may be due, at least in part, to differences in the basic processing and 

representation of numerical vs. proportional information. Moreover, these individual differences 

were found even for total numerical information, which did not show significant group-level 

interference.  

Implications 

Although the most direct implication of the current study is to explain the often-reported 

difficulties seen in both children and adults in terms of non-symbolic (e.g., Boyer et al., 2008; 

Hurst & Cordes, 2018a; Jeong et al., 2007) and symbolic (e.g., Alibali & Sidney, 2015; 

 
9 Individual differences in general processing differences were calculated as [Number Probes on 

Simple Match trials – Proportion Probes on Simple Match trials] and numerical interference as 

[Proportion Probes on Competition trials – Proportion Probes on Simple Match trials]. 
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Braithwaite & Siegler, 2017; Hurst & Cordes, 2016, 2018b; Lortie-Forgues et al., 2015; Ni & 

Zhou, 2005) proportional reasoning, our findings also have implications for the way we 

conceptualize distinct types of quantity more generally. In particular, our findings do not suggest 

that the difficulty associated with processing proportional information stems from only one 

component of these paradigms or one aspect of numerical information that can be immediately 

targeted and rectified. Instead, our findings suggest that both subset and total numerical 

information may be privileged over proportional information in ways that impact basic 

performance differences, in the absence of competing or costly task demands, and that the 

numerical information about the relevant and salient subset may cause additional interference at 

the time of response selection. 

The multifaceted advantage of numerical information found in the current study is in 

apparent contrast to other work suggesting that proportional information is automatically 

encoded and perceptually available (Binzak & Hubbard, 2020; Fabbri et al., 2012; Lewis et al., 

2016), is available and may even be preferred earlier in development (Denison et al., 2013; 

Denison & Xu, 2010; Hurst & Cordes, 2018b; McCrink & Wynn, 2007), and may provide a 

foundation for other aspects of magnitude representation (Bonn & Cantlon, 2017). Thus, what 

accounts for the pervasive difficulties with proportional reasoning, even in terms of basic 

processing costs, found here? Behavioral patterns seen in children who are highly attentive to 

numerical information have been attributed to an over emphasis on the counting routine and 

whole number learning more generally (Boyer et al., 2008; Lortie-Forgues et al., 2015; Ni & 

Zhou, 2005) or from a lack of understanding or precision in representing proportional 

information (Alibali & Sidney, 2015; Lortie-Forgues et al., 2015). However, the question 
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remains, why does a performance discrepancy remain pervasive in adulthood, well after the 

instruction of formal fractions, decimals, and percentages?  

One potential explanation is that the representation of numerical information is made 

easier and/or the representation of proportional information is made more difficult by our formal 

symbolic mathematical systems. That is, whether or not the underlying non-symbolic 

representations are part of the same system or show similar representational precision, mapping 

these systems with symbols and number words may impact how they are interpreted, even for 

adults. In particular, the very well learned mapping between number words and discrete quantity 

may make it easier and more automatic to encode this information (e.g., a participant who sees 5 

red dots and 13 blue dots may encode this as “five red dots”). On the other hand, the symbolic 

number system for proportion (i.e., fractions, decimals, or percentages) is much less 

straightforward and automatic (Kallai & Tzelgov, 2012, 2014; Obersteiner et al., 2013; e.g., 

participants may not be able to readily generate a symbol or verbal label to describe the 

proportion “5/18”). Thus, the symbolic number systems may impact how easily adults are able to 

access the non-symbolic representations of number and proportion and provide accurate 

estimates of these values.  

Taken as is, then, it may be tempting to say that the current study suggests that not only 

are discrete whole number quantities and proportional or ratio quantities represented within 

distinct systems, but that the discrete whole number representational system may be 

psychologically privileged. This interpretation would be consistent with arguments that whole 

numbers are a core knowledge system available in infancy (Spelke & Kinzler, 2007) and that 

continuous and discrete representations of quantity may be psychologically distinct (e.g., Agrillo 

et al., 2010; Dormal et al., 2006; Hamamouche & Cordes, 2020; Young & Cordes, 2013). 
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However, this would be counter to other findings suggesting that proportional information is 

directly processed in some contexts (Binzak & Hubbard, 2020; Fabbri et al., 2012; Lewis et al., 

2014, 2016) and to recent arguments suggesting that both whole numbers and fractions are 

represented within a single rational number system (Clarke & Beck, 2021). Thus, although the 

current study highlights ways in which discrete whole number information and proportional 

information are different, they also share commonalities that have been empirically 

demonstrated, such as the presence of distance effects and the developmental trajectories of 

discrimination abilities(e.g., Matthews & Chesney, 2015; Park et al., 2020), and in terms of their 

formal mathematical nature (i.e., whole numbers are rational numbers and can be represented 

with fractions; 6/2 = 3).  Thus, additional research is needed to better understand the shared and 

divergent processes that underlie whole number and proportional representation. Importantly, 

there are several important considerations about the current experiment that highlight where 

future work is needed to further differentiate these claims.  

Limitations 

First, it is worth noting that one particularly critical aspect of the current stimuli was the 

discrete nature of the dot displays. It may be that these intermixed dot displays make numerical 

information in particular immediately salient, and that relational information would be more 

salient than absolute number or amount in other visual contexts. For example, despite the 

availability of both numerical and proportional information, proportional information may be 

more salient (or at least, as salient as number) in the case of continuous displays that have been 

made discrete (e.g., dividing a rectangle into pieces) or discrete displays that have been clustered 

together (e.g., partitioned dot displays with all the red dots grouped together and all the blue dots 

grouped together). Some work suggests that, at least in the case of continuous representations 
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that are made discrete, it is possible to encourage young children to attend to proportion and 

ignore number, preventing numerical interference (Boyer & Levine, 2015; Hurst & Cordes, 

2018a, 2019). Thus, future work should further investigate how variability across contexts may 

impact the relative saliency of both number and proportion.   

In addition, although our results reveal that matching numbers, be it the number of a 

subset or the total number, was faster than matching proportion, even on Simple Match trials in 

which neither response option matched on the competing dimension, there was still some 

element of “competition” in the sense that both number and proportion were available for 

encoding in the sample stimulus itself and the proportional information must be encoded through 

the numerical relations (i.e., red out of total or red-to-blue ratio). Furthermore, continuous 

magnitude dimensions that co-occur with numerical information, such as cumulative area (e.g., 

Leibovich et al., 2017; Savelkouls & Cordes, 2020) were available in the current study and could 

have been used to support matching on both number and proportion. That is, it could be that 

adults relied on the absolute cumulative area and/or the proportion of cumulative area. Although 

beyond the scope of the current project, an important question for future work is how these two 

orthogonal dimensions – relative proportion vs. absolute amount and continuous magnitude vs. 

discrete magnitude – relate and possibly interact with each other. Work with young children 

suggests that they are able to think about proportion in the context of continuous displays based 

on area alone (Boyer et al., 2008; Hurst & Cordes, 2018a; Jeong et al., 2007), potentially even 

more accurately than with discrete displays. Importantly, however, this has the additional 

confound of not just comparing different quantity representations (proportion versus number), 

but also different perceptual features (discrete versus continuous). Given the long standing 

debate about whether continuous area and discrete number are represented via the same or 
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different representational system across development (Clearfield & Mix, 1999; Leibovich et al., 

2017; Newcombe et al., 2015; Walsh, 2003), it remains unclear how continuous absolute 

amount, discrete number, and both continuous and discrete proportion may be represented and 

understood relative to each other. 

Lastly, it is worth noting that the current study represented proportions with non-symbolic 

ratio-based quantities and used a percent sign (%) as the indicator for proportion. It is unclear 

how the results may have differed had the proportional quantities been directly associated with 

fractions, decimals, or percentages. In particular, adults show large differences in processing 

magnitude information represented with different formats, performing better on quantitative 

reasoning tasks represented with decimals than fractions (e.g., DeWolf et al., 2014; Hurst & 

Cordes, 2016). They also show distinct alignment tendencies, which parallel the aforementioned 

discrete versus continuous representations, in that fractions more strongly align with discrete 

contexts (Rapp et al., 2015). However, it is unclear how percentages (the symbolic reference 

frame used in the current studies) may fit into these differences, as percentages borrow from both 

fractions and place-value and substantially less research has investigated percentage based 

reasoning (see Tian & Siegler, 2018 for a review). Thus, the difficulty of the system for 

symbolically representing proportion may impact the automaticity and accuracy of the 

underlying representation of proportional magnitude, leading to differences in the way that this 

information is encoded and represented and why numerator numerical information may be 

particularly distracting at the level of decision-making. Precisely how this difference may further 

depend on the specific structure of the proportional number system, and the symbol used to 

represent it, however, remains an open question. 

Conclusions 
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 In summary, we present three experiments investigating how adults process discrete dot 

displays in terms of both the numerical and proportional information available in those displays. 

Overall, we provide evidence that numerical information about one subset is more salient, faster 

to process, less error-prone, and more difficult to inhibit relative to proportional information. 

Whereas numerical information about the total set is faster to process than proportion, but not 

less error-prone or more difficult to inhibit. As such, the privileged status of numerical 

information over proportional information is evident throughout processing, but also dependent 

on the specific aspect of numerical information being considered. Importantly, the explanations 

and processes investigated here are also likely interrelated and dependent on each other, and 

future research must continue to investigate what psychological and educational mechanisms 

may be leading to pervasive differences between numerical and proportional quantity 

representations.  
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