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Abstract 

 Children struggle with the quantifier "most". Often, this difficulty is attributed to an 

inability to interpret most proportionally, with children instead relying on absolute quantity 

comparisons. However, recent research in proportional reasoning more generally has provided 

new insight into children’s apparent difficulties, revealing that their overreliance on absolute 

amount is unique to contexts in which the absolute amount can be counted and interferes with 

proportional information. Across two experiments, we test whether 4- to 6-year-old children’s 

interpretation of most is similarly dependent on the discreteness of the stimuli when comparing 

two different quantities (e.g., who ate most of their chocolate?) and when verifying whether a 

single amount can be described with the term most (e.g., is most of the butterfly colored in?). We 

find that children’s interpretation of most does depend on the stimulus format. When choosing 

between absolutely more vs. proportionally more as depicting most, children showed stronger 

absolute-based errors with discrete stimuli than continuous stimuli, and by 6-years-old were able 

to reason proportionally with continuous stimuli, despite still demonstrating strong absolute 

interference with discrete stimuli. In contrast, children’s yes/no judgements of single amounts, 

where conflicting absolute information is not a factor, showed a weaker understanding of most 

for continuous stimuli than for discrete stimuli. Together, these results suggest that children’s 

difficulty with most is more nuanced than previously understood: it depends on the format and 

availability of proportional vs. absolute amounts and develops substantially from 4- to 6-years-

old.  

Keywords: proportion; most; quantifiers; numerical interference  
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Children’s Understanding of Most is Dependent on Context 

1. Introduction 

Children’s understanding of quantifiers – terms that denote amounts of quantities, such as 

most, some, and all – has been of deep interest to linguists and numerical cognition researchers 

for decades. This work has led to substantial insight into children’s language learning, such as 

their use of scalar implicature and pragmatics (e.g., Barner et al., 2011; Horowitz et al., 2018; 

Noveck, 2001), as well as children’s developing understanding of numbers and quantities (e.g., 

Barner, Chow, et al., 2009; Hurewitz et al., 2006). The quantifier most appears to be particularly 

challenging, both for children and for researchers. One reason for this difficulty is that most 

cannot be expressed using first-order logical predicates and instead requires comparing relative 

magnitudes (Barwise & Cooper, 1981). Although researchers have recognized this relational 

structure of most, their focus has been on comparisons of numerical quantities, whereas the 

question of how children’s understanding of most is related to their conceptualization of 

proportional information has been overlooked. Importantly, a recent surge of research in young 

children’s proportional reasoning has provided insight into the features that can facilitate or 

hinder proportional reasoning (Begolli et al., 2020; Davis, 2003; Jeong et al., 2007; Möhring et 

al., 2016). For example, one specific feature known to impact children’s proportional reasoning 

is whether the proportional information is based on discrete numerical quantities (e.g., sets of 

dots) or on continuous area-based quantities. Children are less likely to make proportion-based 

judgements with discrete proportions compared to continuous proportions across a range of 

contexts, including when the proportions represent juice mixtures (Boyer et al., 2008), 

probabilistic game spinners (Hurst & Cordes, 2018; Jeong et al., 2007), and sharing scenarios 

(Hurst et al., 2020). In the current study, we test whether children’s interpretation of the 
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quantifier most also depends on this perceptual feature (i.e., differs for discrete versus continuous 

quantities), thereby addressing both methodological and theoretical questions about the 

development of children’s understanding of quantifiers in language and children’s understanding 

of proportional reasoning – two topics that are central to human cognition.  

1.1 The Quantifier Most 

 Research investigating the development of children’s understanding of most has provided 

conflicting evidence, with varying accounts of the age at which children understand its meaning. 

Some work has shown success at understanding most as early as age 3 (Halberda et al., 2008). 

For example, when given a set of objects with the majority blue or yellow, Halberda and 

colleagues found that 3-year-old children were readily able to answer the question “Are most of 

the objects blue or yellow?” In contrast, other work suggests that children do not reach an adult-

like understanding of most until after 6-years-old. When asked to provide most objects in a set, 2- 

to 5-year-old children were unable to do so (Barner, Chow, et al., 2009; Barner, Libenson, et al., 

2009). Furthermore, when verifying sets and indicating whether or not they can be described 

with most many 6- to 8-year-old children (about 30%) accepted values below half (e.g., 1/6) as 

being most (Papafragou & Schwarz, 2006). 

 One critical difference between these studies with conflicting findings is whether children 

were able to draw upon their understanding of more to make judgements about most. In the 

paradigm used by Halberda and colleagues (2008), children could respond based on which set 

was more (blue or yellow objects), whereas children tested by Barner and colleagues (Barner, 

Chow, et al., 2009; Barner, Libenson, et al., 2009) and Papafragou and Schwarz (2006) were not 

able to use this strategy to help them. In a recent study, Sullivan and colleagues (Sullivan et al., 

2018) directly tested this hypothesis by comparing 4- to 6-year-olds’ ability to select the 
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appropriate set for most when it was directly pitted against an absolute more-based interpretation. 

For example, children were asked who popped most of their balloons, a character who popped 3 

out of 5 or a character who popped 4 out of 9. Sullivan and colleagues (2018) found that 4- to 6-

year-old children tended to select the character who popped more balloons (popped 4 balloons, 

rather than 3), even though that character did not pop most of their balloons (4/9 is fewer than 

half, whereas 3/5 is more than half). Together, this work suggests that children do not have a 

“more than half” relational understanding of the term most until beyond 6-years-old, and instead 

that young children may interpret most to mean more in a comparison context (as described 

above). 

 Notably, this discussion raises two distinct, but related, aspects of children’s 

understanding of the quantifier most: (a) whether they can take a proportional “more than half” 

interpretation and (b) whether they distinguish most from more. Here, we focus on the first 

aspect by drawing upon recent findings from the proportional reasoning literature more broadly. 

Specifically, the interference between absolute amount comparisons and proportional 

comparisons is a well-established phenomenon in the proportional reasoning literature, even in 

the absence of specific quantifier vocabulary. However, we return to a discussion of the second 

aspect (i.e., whether children distinguish between most and more) in the General Discussion 

(Section 4.1.2), including how our findings speak to this issue.  

1.2 Numerical Interference in Proportional Reasoning 

 Research findings suggest that infants and young children have sophisticated proportional 

reasoning abilities. For example, 6-month-olds can be habituated to specific proportions 

(McCrink & Wynn, 2007) and can make inferences about the probable outcome of sampling 

based on the proportional distribution of a population (e.g., demonstrating surprise when a low-
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probability outcome is randomly sampled from a bin; Denison et al., 2013). Despite this early-

developing sensitivity to proportion, however, 6-year-old children show systematic errors in their 

proportional reasoning. Specifically, when visual proportions are presented as relations of 

continuous amounts, such that the proportional information is based on area and not number, 6-

year-olds are able to select the larger of two proportions (Hurst & Cordes, 2018; Jeong et al., 

2007) and match equivalent proportions (Boyer et al., 2008). However, when visual proportions 

are presented as relations of discrete sets, such that proportional information is conveyed with 

countable numbers of objects or parts, 6-year-olds make systematic errors, such as erroneously 

deciding that 4/9 is more than 3/5 or matching 4/9 with 4/5 rather than with 8/18 (Boyer et al., 

2008; Hurst & Cordes, 2018; Jeong et al., 2007). These errors are often attributed to heightened 

attention to absolute numerical information, potentially through counting strategies, which 

interfere with children’s proportional reasoning (Boyer et al., 2008). Furthermore, this numerical 

interference in the context of discrete quantities hinders proportional reasoning in a range of 

contexts, for example comparing the probability a game spinner will landing on a given outcome 

(Hurst & Cordes, 2018; Jeong et al., 2007), matching equivalent tasting mixtures of juice and 

water (Boyer et al., 2008), and making judgements of the niceness of characters based on the 

proportional versus absolute amount they shared (Hurst et al., 2020). Thus, the existing literature 

on children’s proportional reasoning is consistent with the error pattern found by Sullivan and 

colleagues (2018) in children’s understanding of most because the task they employed used 

proportions of discrete countable sets, just the context that impedes children’s reasoning about 

proportions, providing a more general explanation of their difficulty that is not specific to a 

misunderstanding of most. 

1.3 The Current Study 
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In the current study, we ask how children’s understanding of most is impacted by the 

perceptual saliency or availability of numerical information. Based on the findings that have 

emerged from the proportional reasoning literature, we hypothesized that children’s difficulty 

with a proportional interpretation of most in discrete contexts is due to the discreteness of the 

stimuli, which leads to numerical interference, rather than a difficulty understanding most in 

general. Thus, in Experiment 1 we used the same paradigm as Sullivan et al. (2018) to contrast a 

proportional vs. absolute comparison interpretation of most but did so by comparing performance 

in a discrete context that emphasized numerical information (an almost exact replication of 

Sullivan et al., 2018) and a continuous context that removed countable numerical information. In 

Experiment 2, we replicate this same phenomenon with new stimuli and further test whether this 

difference between discrete and continuous stimuli arises exclusively in comparison contexts, in 

which there is the opportunity for interference from an absolute amount comparison, or whether 

it arises even in the absence of this conflict, and thus reflects a more general difference in the 

processing of discrete vs. continuous information. Thus, the goal of Experiments 1 and 2 is to 

investigate whether children can demonstrate a proportional interpretation of the quantifier most. 

If our hypothesis is correct, and children do have a proportional understanding of most but fail to 

demonstrate this understanding when numerical information interferes, then in the comparison 

tasks in Experiments 1 and 2 children should show a greater proportion-based interpretation of 

most with continuous stimuli (i.e., when numerical interference is not available) than with 

discrete stimuli (i.e., when an absolute numerical response is available). In contrast, in the 

verification task in Experiment 2, when the absolute number response is not in competition with 

the proportional response, children should be able to reason about most as “more than half” in 
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the context of discrete as well as continuous quantities. Alternatively, if our hypothesis is not 

correct and children in the age range tested do not yet have a proportional interpretation of  

most, then even though they may succeed on the verification task in Experiment 2 (as children 

can succeed using non-proportional strategies), they should fail on the comparison task in 

Experiments 1 and 2 when comparing both continuous and discrete stimuli.  

Together, these experiments allow us to address significant methodological and 

theoretical questions at the core of human cognition. If children’s understanding of most is 

dependent on the perceptual characteristics of the stimuli, as we hypothesize, then theoretical 

accounts of children’s quantifier knowledge based exclusively on discrete and countable stimuli 

may be missing important nuances in children’s thinking and underestimate their proportional 

understanding of the quantifier most. By including both continuous and discrete stimuli and 

comparison and verification contexts (i.e., with and without the opportunity for numerical 

interference), we can build a more complete picture of children’s understanding of most.  

Moreover, given the ubiquity of proportional information in a range of cognitive 

domains, such as probabilistic reasoning, social cognition (e.g., sharing), and intuitions about 

physics (e.g., is the book likely to fall if most of it is on the table?), investigating the context-

dependence of proportional reasoning can have far-reaching implications for understanding its 

development and how children draw upon their underlying conceptualization of proportion to 

guide their behavior. This is especially critical for developing theories of cognitive development 

that take context-dependence into account.   

2. Experiment 1 

2.1 Method 

2.1.1 Participants 
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 As pre-registered, our final sample consisted of 120 4- through 6-year-old children, Mage 

= 65 months, randomly assigned to one of the two block orders. Sixty children completed the 

continuous block of trials first: 20 4-year-olds, Mage = 53 months, Range: 48 to 60 months, 15 

girls and 5 boys; 20 5-year-olds, Mage = 67 months, Range: 62 to 71 months, 11 girls and 9 boys; 

and 20 6-year-olds, Mage = 76 months, Range: 72 to 83 months, 9 girls and 11 boys; and 60 

children completed the discrete block of trials first: 20 4-year-olds, Mage = 53 months, Range: 48 

to 59 months, 9 girls and 11 boys; 20 5-year-olds, Mage = 66 months, Range: 61 to 70 months, 9 

girls and 11 boys; and 20 6-year-olds, Mage = 78 months, Range: 73 to 83 months, 11 girls and 9 

boys. Two additional children participated in at least some of the task but were excluded because 

of experimenter error (n = 1) or parental interference (n = 1). 

Children were recruited from the greater Chicago, IL area, through local schools (37% of 

sample), a science museum (14% of sample), and our lab database (27% of sample), and tested 

in-person in their school, at the museum, or in our campus lab, respectively. In addition, some 

children, who were recruited through our lab database, Children Helping Science 

(childrenhelpingscience.com), and social media, were tested online via video-chat (23% of 

sample). Children were compensated with a small sticker or prize (except for when tested over 

video-chat), parents of children tested in our lab or online were compensated with $10, and 

schools were compensated with $50 for classroom supplies. All procedures were approved by the 

University of Chicago Institutional Review Board and parents provided informed consent.  

Approximately 70% of the sample completed at least some of an additional demographic 

survey (demographic information was not collected from children at the museum and was 

optional for all other families). Based on this subsample, 6% reported being Asian, 20% Black or 

African American, 57% White, 9% more than one race (a combination of Black, African 
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American, American Indian or Alaskan Native, Native Hawaiian or Other Pacific Islander, 

White, and Asian), and 7% reported Other. In addition, about 10% of children were identified as 

Hispanic or Latino/a/x. Most of the sample that reported demographics came from high-income 

homes, with 66% earning more than $100,000 per year, 20% reporting $50 - $99K per year, and 

14% reporting less than $50K per year. Lastly, 84% of the parents who completed the 

demographic form (85% of whom were mothers) had at least a college degree. 

2.1.2 Procedure and Stimuli 

 All children completed a Continuous block of trials and a Discrete block of trials and 

were randomly assigned, within their age group, to receive one of these blocks before the other. 

The stimuli differed across the two blocks, but the procedure was identical. Most children (77%) 

were tested in person and stimuli were presented on paper in a binder. The remaining 23% were 

tested online, due to COVID-19 halting all in person data collection, and the stimuli were 

presented via Microsoft PowerPoint1. Throughout, we note where modifications to the procedure 

and stimuli were needed to facilitate online data collection.  

On each trial, children were told about two people who did something to some of their 

stuff and were asked who did that thing to most of their stuff, in the form of “who [verb] most of 

their [noun]s?”, for example: “who broke most of their drums?”. The discrete block was modeled 

after Sullivan and colleagues (2018) and introduced discrete stimuli using number words. For 

example, the experimenter would say “John played nine drums. Amanda played three drums. 

John broke four of them. Amanda broke two of them. Who broke most of their drums?” 

 
1 Children tested online scored higher than children tested in person. However, the online sample also included a 

higher proportion of 6-year-olds (25% of the in-person sample vs. 63% of the online sample), making it likely that 

this increase in performance is due to differences in age rather than differences in the testing medium. Importantly, 

however, data collection type did not interact with Block Type (the primary comparison of interest) and analyses 

with the in-person sample alone shows the same pattern as the combined sample.  
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Individual items (in this example, drums) were used to represent the objects, with the referenced 

subset (in this example, the broken drums) represented with X’s over the objects (see Figure 1, 

left). The continuous block had the same structure as the discrete block but used the word 

“some” instead of number words and used stimuli consisting of continuous quantities. For 

example, the experimenter would say “John made some lemonade. Amanda made some 

lemonade. John sold some of it. Amanda sold some of it. Who sold most of their lemonade?” A 

single rectangle was used as the visual depiction of the continuous object or item (in this 

example, lemonade), with the corresponding referenced amount (in this case, the amount sold) 

shown with an X (see Figure 1, right). For in-person administration, the experimenter pointed to 

each quadrant while saying the phrase for that quadrant and children’s verbal or pointing 

responses were accepted (e.g., saying “Amanda” or pointing to Amanda’s quadrant). Since 

pointing is not feasible for online data collection, the quadrants had color coded frames around 

them so that John’s quadrants had blue frames and Amanda’s quadrants had yellow frames. 

While saying each phrase, power point animations had the colored frame appear to highlight the 

corresponding quadrant and during the question, both frames appeared on the relevant “end 

state” quadrants (Figure 1B). Children’s verbal responses in terms of either the person (e.g., 

“Amanda”) or the color of the frame (e.g., “yellow”) was accepted. If children pointed to one of 

the quadrants, they were asked if they were pointing to John’s blue box or Amanda’s yellow box.  
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Each block had 8 trials that pit proportional responses against numerical responses. That 

is, one person always did proportionally the most (i.e., more than half), but numerically fewer 

and the other person always did numerically more, but not most of their own (i.e., less than half). 

The 8 discrete trials were (presented in this order and as John vs. Amanda on the left and right, 

respectively): 3/5 vs. 4/9 Balloons, 3/5 vs. 5/12 Paintings, 4/9 vs. 3/5 Buttons, 3/4 vs. 4/10 

Drums, 4/9 vs. 2/3 Drums, 4/10 vs. 3/4 Paintings, 4/9 vs. 3/5 Buttons2, and 5/12 vs. 3/5 Balloons. 

The 8 continuous trials were matched to the same proportional magnitudes as the discrete trials, 

but presented without specific discrete numerical information and instead just continuous area 

(presented in this order and as John vs. Amanda on the left and right, respectively): 0.96 / 1.6 

inches vs. 1.28 / 2.88 inches “Sand” (width = 1.4 inches); 1.2 / 2 inches vs. 2 / 4.8 inches 

“Chocolate” (width = 1.28 inches); 2.03 / 4.57 inches vs. 1.52 / 2.54 inches “Grass” (width = 

 
2 This trial was accidentally repeated in the discrete block (rather than 2/3 vs. 4/9), and so differs between the 

discrete and continuous blocks. However, the pattern of findings is identical if this trial is removed.  

Figure 1: Example stimuli from the Discrete (left) and Continuous (right) 

blocks of trials, when presented in-person on paper (Panel A) and online via 

PowerPoint (Panel B). When presented online, the experimenter pointed to the 

quadrants rather than using color coded frames.  
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1.41 inches); 1.2 / 1.6 inches vs. 1.6 / 4 inches “Chocolate” (width = 1.28 inches); 1.28 / 2.88 

inches vs. 0.64 / 0.96 inches “Lemonade” (width = 1.39 inches); 1.15 / 2.88 inches vs. 0.86 / 1.15 

inches “Lemonade” (width = 1.4 inches); 0.5 / 0.75 inches vs. 1 / 2.25 inches “Sand” width = 1.4 

inches); 1.65 / 3.96 inches vs. 0.99 / 1.65 inches “Grass” (width = 1.41 inches). John was always 

on the left and Amanda was always on the right to make it easier for children to keep track of the 

stories. However, the proportional answer was on the left (i.e., John) for 3 out of 8 trials in the 

discrete block (because of the accidental repeat trial, see footnote 2) and on 4 out of 8 trials in the 

continuous block. Children were scored on the proportion of trials on which they selected the 

proportional response, within the discrete block and the continuous block separately. 

2.1.3 Transparency, Sample Size, and Data Analysis 

The study was pre-registered on the Open Science Framework (OSF; https://osf.io/s25fd). 

All materials, deidentified raw data (Hurst & Levine, 2022), and analysis code is also available 

on the OSF at https://osf.io/vhj5q/.   

Our sample size was chosen a priori based on power analyses and simulations reported in 

Brysbaert (2019). Although our primary research question is about the within-subject 

comparison between Discrete and Continuous trials, prior work suggests there may be an 

interaction or main effect involving the order in which children completed the blocks (e.g., 

Boyer & Levine, 2015;  Hurst & Cordes, 2018). Thus, we used a sample size to allow for 80% 

power to detect an interaction effect of approximately d = 0.6 and test our primary hypothesis 

with a between-subject comparison on the first block of trials (d ~ 0.6, power ~ 80%), if needed. 

If there is not a significant effect of the counterbalanced block order, this design also provides 

substantial power (> 90%) to detect a within-subject effect of d = 0.4.  

https://osf.io/vhj5q/
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Data was analyzed using R 4.0.2 (R Core Team, 2020) in RStudio (R Studio Team, 

2016). Data organization and wrangling was done with tidyverse (Wickham, 2017). Statistical 

analyses were computed using base R and rstatix 0.6.0 (Kassambara, 2020) for ANOVA, t-tests, 

and correlations, as well as cocor 1.1.3 (Diedenhofen & Musch, 2015) for comparing 

correlations. Data visualizations were created using ggplot2 3.3.2 (Wickham, 2016).  

2.2 Results 

 Following our pre-registered analysis plan, we used an ANOVA with Block (2: 

Continuous, Discrete) as a repeated measure and Order (2: Continuous First, Discrete First) as a 

between-subject factor (see Figure 2).  The ANOVA revealed a significant main effect of Block, 

F(1,118) = 33.30, p < .001, 2
partial = 0.22, with children making more proportion-based 

responses on the Continuous trials, M = 0.54, SD = 0.40, than on the Discrete trials, M = 0.33, 

SD = 0.39. There was not a significant effect of Order, F(1,118) = 3.66, p = .058, 2
partial = 0.03, 

nor an Order x Block interaction, F(1,118) = 2.77, p = .099, 2
partial = 0.02. As described in our 

pre-registration plan, we were concerned there might be order effects and planned on doing the 

more conservative between-subject comparison on only the first block of trials if either the main 

effect or interaction involving order were significant. Although not significant, the main effect of 

order is only just outside the threshold (0.058 > 0.05), and so to test the robustness of the effect 

we are reporting the more conservative between-subject test as well. This analysis was consistent 

with the within-subject analyses, suggesting that children again made more proportion-based 

responses on the first Continuous block, M = 0.57, than the first Discrete block, M = 0.24, t(118) 

= 4.93, p < .001, d = 0.90.  
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2.2.1 Exploratory Age Differences 

 As additional exploratory analyses, we were interested in whether there were age 

differences in the pattern of performance (see descriptive statistics in Table 1). When age group 

(4-, 5-, or 6-year-olds) is included in the ANOVA described above, there is a significant Age x 

Block interaction (p = .042, 2
partial = 0.05). Thus, we analyzed each age group separately.  

 

Table 1: Mean (Standard Deviation) proportion of trials selecting the larger proportion, 

separated by Age Group, Block Type, and Order of Blocks 

 Continuous Block First Discrete Block First 

 
Continuous 

Trials 
Discrete Trials 

Continuous 

Trials 
Discrete Trials 

4-year-olds .49 (.40) .38 (.39) .49 (.41) .43 (.42) 

5-year-olds .58 (.36) .35 (.40) .44 (.42) .11 (.27) 

6-year-olds .64 (39) .51 (43) .61 (.43) .17 (30) 

 

Figure 2: In Experiment 1, the proportion of trials children selected the larger 

proportion, for the continuous (dark grey; left) and discrete (light gray; right) trials, 

separated based on the order in which children received the blocks (x-axis). Points 

represent means, error bars are standard error of the mean, and violin plots display a 

smoothed kernel density plot of the underlying distribution. 
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Analyses on 4-year-old children’s performance did not reveal any significant effects: 

Block, F(1,38) = 3.7, p = .064, 2
partial = 0.09, Order, F(1,38) = 0.06, p = .816, 2

partial = 0.001, or 

Block x Order, F(1,38) = 0.25, p = .623, 2
partial = 0.006. In contrast, both the 5- and 6-year-olds 

show a different pattern. For 5-year-olds, there was a significant main effect of Block, F(1,38) = 

15.72, p < .001, 2
partial = 0.29, and Order, F(1,38) = 4.18, p = .048, 2

partial = 0.10, but not a 

significant interaction, F(1,38) = 0.63, p = .43, 2
partial = 0.02. Specifically, five-year-old children 

made more proportion-based responses on the Continuous trials than the Discrete trials and 

children who completed the Continuous block first made more proportion-based responses than 

those who completed the Discrete block first. For 6-year-olds, there was a significant main effect 

of Block, F(1,38) = 15.99, p < .001, 2
partial = 0.30, and a significant Block x Order interaction, 

F(1,38) = 4.64, p = .038, 2
partial = 0.11, but not a main effect of Order, F(1,38) = 3.53, p = .068, 

2
partial = 0.09. Follow up analyses suggest that the 6-year-olds performed similarly on the 

Continuous trials, regardless of if it was their first block or their second block, t(38) = 0.29, p = 

.774, d = 0.09. However, they made significantly more proportion-based responses on the 

Discrete block when it followed the Continuous block than when it was the first block, t(38) = 

2.91, p = .006, d = 0.92.  

In summary, and as can be seen in Figure 3, the difference in performance between the 

continuous and discrete trials tends to increase across the three age groups. To provide further 

insight into this pattern, we also looked at children’s performance relative to chance. Four-year-

olds did not score significantly different from chance on either trial type, ps > .10. Five-year-olds 

scored significantly below chance on the discrete trials, p < .001, but not different from chance 

on the continuous trials, p = .88. Six-year-olds scored significantly below chance on the discrete 



 17 

trials, p = .018, and slightly, though not significantly, above chance on the continuous trials, p = 

.058.  

 

 

2.3 Discussion 

 Data from Experiment 1 replicated and extended Sullivan et al., (2018): children’s 

absolute more-based interpretation of most is exacerbated in discrete contexts where numerical 

information is available, relative to continuous contexts. Furthermore, exploratory analyses 

across the age groups in our sample suggest that children’s first interpretation of most as 

absolutely more may be exclusively applied to discrete contexts where absolutely more is based 

on greater number; strikingly, none of the age groups in our sample reliably used an absolute 

area comparison in their interpretation of most on the continuous trials. Moreover, a proportional 

interpretation of most, even in the continuous contexts where proportional reasoning is typically 

facilitated (e.g., Boyer et al., 2008; Hurst & Cordes, 2018), was not fully evident in our sample, 

Figure 3: Proportion of trials on which children selected the larger proportion on 

the continuous (dark grey; left) and discrete (light gray; right) blocks, separated 

by age group (x-axis). Points represent means, error bars are standard error of the 

mean, and violin plots display a smoothed kernel density plot of the underlying 

distribution. 
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although there was some evidence that it might be emerging around 6 years old. Together, these 

results indicate that there is numerical interference in the interpretation of most in the context of 

discrete quantities, but also that children have difficulty making a truly proportional 

interpretation of most even in the context of continuous quantities.  

In Experiment 2, we aim to conceptually replicate Experiment 1, but we modified the 

study in four ways, with the goal of improving the experimental stimuli and allowing us to 

address additional questions. First, it’s possible that the increased attention to numerical 

information with discrete stimuli was not caused by the visual availability of numerical 

information, but rather by using number words during the description of the stimuli. In other 

words, the verbal number words might have highlighted a comparison of the absolute 

cardinalities. To address this possibility, in Experiment 2 we did not use number words to 

introduce the stimuli and instead rely on generic quantifiers (i.e., this much and this many).  

 Second, we address the possibility that chance performance with continuous stimuli was 

due to children’s difficulty understanding the continuous version of the task. The continuous 

stimuli were more abstract than the discrete stimuli (e.g., colored rectangles representing a glass 

of lemonade versus images of drums representing drums) and the visual depiction of the amount 

being discussed (e.g., the amount sold) was represented as a partitioned section of the rectangle 

with an “X” in it. Although the “X” was also used on individual objects in the discrete stimuli, 

the subtle partition and “X” within a single object may have been more difficult to understand 

than an “X” to cross out a whole object. Thus, in Experiment 2, we used stimuli that provide a 

more natural part-whole interpretation and can be represented using actual images of the stimuli 

that correspond to the sentence provided rather than abstract shapes (e.g., a butterfly that’s 

partially colored, an image of an actual glass of water that’s partially filled).  
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 Third, we address the possibility that the difference in performance between discrete and 

continuous trials in Experiment 1 was due to more general differences in how continuous and 

discrete contexts are interpreted, rather than due to numerical interference per se. That is, given 

that children’s performance remained around chance on the continuous trials, it may be that they 

were not able to interpret the word most in this context at all. To investigate this possibility, we 

measured children’s interpretation of most using a comparisons task as well as a non-comparison 

verification task on which children can rely on absolute counts or amounts to determine whether 

a stimulus is consistent with most. If children’s difficulty with most in discrete contexts is 

specifically due to numerical interference, then we should not see a relative benefit of continuous 

vs. discrete stimuli on the verification task because numerical interference is eliminated. On the 

other hand, if the pattern of results from Experiment 1 is attributable to children’s specific 

difficulty with most in discrete contexts and general confusion around the term most in 

continuous contexts, then we would expect a difference between discrete and continuous stimuli 

in both a verification task that does not involve numerical interference (i.e., is this most?) and a 

comparison context that does (i.e., which is most?).  

Fourth, and finally, the exploratory age analyses suggest that the older children in the 

sample might have had a more proportional understanding of most, demonstrating the largest 

effects and the most interesting developmental pattern. Thus, in Experiment 2 we focus on just 5- 

and 6-year-olds (and not 4-year-olds), allowing us to investigate the emergence of a proportional 

interpretation of most and condition differences with increased power. 

3. Experiment 2 

3.1 Method 

3.1.1 Participants 
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 As pre-registered, our final sample is 120 5- and 6-year-old children, Mage = 71 months, 

randomly assigned to one of the two block orders. Sixty children completed the continuous block 

of trials first: 30 5-year-olds, Mage = 65 months, Range: 60 to 71 months, 8 girls, 16 boys, 6 

undisclosed gender; and 30 6-year-olds, Mage = 77 months, Range: 72 to 83 months, 12 girls, 13 

boys, 5 undisclosed gender. Sixty children completed the discrete block of trials first: 30 5-year-

olds, Mage = 66 months, Range: 60 to 71 months, 14 girls, 11 boys, 5 undisclosed gender; and 30 

6-year-olds, Mage = 77 months, Range: 73 to 83 months, 11 girls, 14 boys, 5 undisclosed gender. 

An additional four children completed at least some of the task but are not included in the 

analyses because of technology issues (n = 2), they did not complete the task (n = 1), or because 

they were out of the target age range (n = 1).  

Children were recruited from our lab database, social media, and Children Helping 

Science (childrenhelpingscience.com) and tested online via video-chat. Families were 

compensated with $5. All procedures were approved by the University of Chicago Institutional 

Review Board and parents provided informed consent.  

Approximately 88% of the sample completed at least some of an additional demographic 

survey. Based on this subsample, 17% reported being Asian, 9% Black or African American, 

65% White, 9% more than one race, and < 1% reported Other that was not one of the previous 

categories. In addition, about 17% of children were identified as Hispanic or Latino/a/x. Most of 

the sample that reported demographics came from high-income homes, with 54% making more 

than $100,000 per year, 33% reporting $50 - $99K per year, and 13% reporting less than $50K 

per year. Lastly, 92% of the parents who completed the demographic form (81% of whom were 

mothers) had at least a 4-year bachelor’s degree or equivalent.  

3.1.2 Procedure and Stimuli 



 21 

 All children completed a Verification Task and a Comparison Task (similar to 

Experiment 1) with both discrete and continuous stimuli. The discrete and continuous stimuli 

were presented in two separate blocks with the order counterbalanced across participants. Within 

each block, the Verification Task always preceded the Comparison Task.  

 Children participated online over video chat (via Zoom) and both tasks were programmed 

and administered in PsycoPy3 v3.2.4 (the task was also sometimes administered using 

PsychoPy2020 v2020.1.2) run on the experimenter’s computer and shared via screen sharing. 

Prior to beginning the task, children were shown a screen with an image in each corner and asked 

to describe what they saw. This initial task was included as a warmup, given children’s different 

levels of comfort with video chat, and to help troubleshoot any issues with screen visibility.  

3.1.2.1 Verification Task.  

The verification task included 24 trials in which children were shown an image that 

showed a set of items (Discrete Block) or a single item displaying a continuous amount 

(Continuous Block) and asked whether most of the set or amount met the condition (see Figure 

4A). On the Discrete block, each image was a set of items, some of which fulfilled a property 

and some of which did not: full vs. empty glasses of water, purple vs. white butterflies, full vs. 

empty jars of sand, full vs. empty bags of cereal, and full vs. empty boxes of pizza. Children 

were then asked questions of the form “Are most of the [noun verb phrase]?”, such as “Are most 

of the butterflies colored in?”. On the Continuous block, each image was a matched single item 

that varied in the amount presented: glass of water, colored butterfly, jars of sand, bags of cereal, 

and pizza boxes. Children were asked questions of the form, “Is most of the [noun verb phrase]”, 

such as “Is most of the butterfly colored in?”. Children’s verbal yes or no response was recorded 

by the experimenter using the keyboard (y or n key respectively).  
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Trials included depictions of values from 0% to 100%, presented in a random order: 0% 

(2 trials), 25% (5 trials), 40% (5 trials), 60% (5 trials), 75% (5 trials), and 100% (2 trials). On 

discrete trials, the total set size ranged from 3 to 12 and the relevant subset (e.g., full glasses of 

water, purple butterflies) ranged from 1 to 6.  These ratios were chosen to allow us to compare 

children’s judgements for values that are less than half and values more than half. Empty (0%) 

and full (100%) were included to provide some sense of children’s interpretations at the 

extremes, but given that these trials were of less interest to our current research question, we 

included fewer of these trials.  

3.1.2.2 Comparison Task 

The comparison task included 14 trials in which children were introduced to an orange 

monster and a green monster, each of whom had a set or amount that depicted a given value (like 

those used in the verification task) and asked which option satisfied the requirement involving 

the quantifier most (see Figure 4B). On the Discrete Block, the sets were of the same structure 

Figure 4: Example stimuli from the Verification Task (Panel A) 

and Comparison Task (Panel B) of Experiment 2, with discrete 

stimuli on the left and continuous stimuli on the right.  
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used in the verification task and shown one-at-a-time for the orange and green monster, while the 

experimenter said: “The [orange/green] monster [verb] this many [noun phrase]” (e.g., “the 

orange monster filled this many glasses with water”). After introducing both monsters and both 

sets, children were then asked “who [verb] most of their [noun phrase]” (e.g., “who filled most of 

their glasses with water?”). The same basic structure was used on the Continuous Block using 

the same amounts as the verification task, but the amounts were introduced using the phrase “the 

[orange/green] monster [verb] [noun phrase involving “this much”]” (e.g., “the orange monster 

filled their glass with this much water”) and children were asked which is most using the phrase 

“who [verb] most of their [noun phrase]” (e.g., “who filled most of their glass with water?”). 

Children’s verbal response (orange or green) was recorded by the experimenter using the 

keyboard (left or right arrow key). If children pointed, they were asked whether they were 

pointing to the orange monster (always presented on the left) or the green monster (always 

presented on the right). 

 On both blocks, 10 (out of 14) trials included the same competition as Experiment 1, such 

that one option had more absolute amount than the other option (in terms of number on the 

discrete block and area on the continuous block) but was a value less than half, while the other 

option always had a lower absolute amount (number or area) but was a value more than half. The 

remaining four trials compared two options that had the same total set size/amount (e.g., 3/4 vs. 

1/4), meaning that the option with absolutely more also had proportionally more. The specific 

proportional values used were matched across blocks and the trials were presented in a random 

order (within block). The specific stimuli included a similar range of values to those used in the 

Verification task, with the less than half proportions ranging from 25% to 44% and the more than 

half proportions ranging from 60% to 75%.  
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3.1.3 Transparency, Sample Size, and Data Analysis 

 The study was again pre-registered on the OSF (https://osf.io/52fjr). Sample size 

justification, data analysis, and open materials, data, and analysis are as described for 

Experiment 1.  

3.2 Results 

3.2.1 Verification Task 

 Trials depicting 0% and 100% were included to ensure children were asked about the full 

range of values and to provide some descriptive sense of children’s performance at these 

boundaries. In general, regardless of the order in which children saw the blocks or whether the 

stimuli were discrete or continuous, children overwhelming said that 0% values were not most 

(Ms ≤ 5% of trials with “yes” response) and that 100% values were most (Ms > 85%  of trials 

with “yes” response), in line with prior work with similarly aged children (Papafragou & 

Schwarz, 2006). For our primary analyses, however, we focused on values between these 

extremes, excluding the endpoints (although, the pattern of findings is identical when these 

values are included). Children’s acceptance of most across each of the values tested (0%, 25%, 

40%, 60%, 75%, and 100%) are shown in Figure 5.  
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As pre-registered, we analyzed the proportion of trials on which children said “yes” using 

a Percent Category (2: less than half, more than half) x Block Type (2: Continuous, Discrete) x 

Order (2: Discrete first, Continuous first) ANOVA. This analysis revealed a main effect of 

Percent Category, F(1, 118) = 228.70, p < .001, 2
partial = 0.66, and that Percent Category 

interacted with both Block Type, F(1, 118) = 6.22, p = .014, 2
partial = 0.05, and Order, F(1, 118) 

= 11.05, p = .001, 2
partial = 0.09, with no other significant effects, ps > .100. Given the 

interaction between Percent Category and Order, and in line with our pre-registered analysis 

plan, we re-analyzed the data using the more conservative between-subject comparison of the 

Figure 5: In the Verification task of Experiment 2, the proportion of trials on which children responded 

that “yes” the depicted value was most, for the continuous (dark grey) and discrete (light gray) trials, 

separated based on the percentage value depicted by the stimulus (x-axis) and the order in which the 

child saw the blocks (left vs. right plots). Points represent means and error bars are standard error of 

the mean.  
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first block of trials only to test our primary hypothesis (although the pattern of results described 

below is also found when analyzed within subject across the first and second block). 

The Percent Category (2, within-subject: less than half, more than half) x First Block 

Type (2, between-subject: Continuous, Discrete) ANOVA confirmed a main effect of Percent 

Category, F(1, 118) = 233.87, p < .001, 2
partial = 0.67, and a Percent Category x First Block 

Type interaction, F(1, 118) = 18.22, p < .001, 2
partial = 0.13, but not a main effect of First Block 

Type, F(1, 118) = 2.65, p = .106, 2
partial = 0.02. Children correctly responded “yes” at above 

chance levels when the value was above 50% on both the Discrete, M = 0.83, SD = 0.32, t(59) = 

8.00, p < .001, and Continuous trials, M = 0.76, SD = 0.32, t(59) = 6.31, p < .001, which were 

not significantly different from each other, t(118) = -1.22, p = .23. In contrast, children 

responded “yes” at below chance levels (i.e., tended to correctly respond “no”) when the value 

was below 50% on both the Discrete, M = 0.14, SD = 0.29, t(59) = -9.80, p < .001, and 

Continuous trials, M = 0.37, SD = 0.39, t(59) = -2.58, p = .012. In this case, there was also a 

significant difference between the continuous and discrete trials, with children incorrectly 

responding “yes” on values smaller than 50% more frequently when the values were presented 

continuously than when presented discretely, t(108.22) = 3.71, p < .001 (not assuming equal 

variances because of a significant difference in variances).  

3.2.1.2 Exploratory Age Effects 

 When age group is included in the ANOVA on the first block, there were not significant 

main or interaction effects involving age (ps > .05). Moreover, 6-year-olds correctly responded 

“yes” to values above 50% and correctly responded “no” to values below 50% at above chance 

levels on both continuous and discrete trials: proportion of trials saying “yes” for trials above 

50%: Mcont = .75, Mdisc = .90, and below 50%: Mcont = .32, Mdisc = .11, all comparisons to chance 
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ps < .02. Five-year-olds were similarly successful on most trial types, proportion of trials saying 

“yes” for trials above 50%: Mcont = .77, Mdisc = .76, and below 50%: Mdisc = .16, comparison to 

chance ps < .001, except for values below 50% presented with continuous stimuli, where 5-year-

olds were not significantly different from chance, M = .42, p = .304. Thus, although there are not 

significant age differences (potentially because of the relatively low power to detect them), 5-

year-olds may less consistently reason about most than 6-year-olds.  

3.2.2. Comparison Task 

 Children performed very well on the trials that had an equal total amount, which did not 

pit proportion and absolute amount against each other, with both Continuous, M = 0.88, and 

Discrete M = 0.92, stimuli, suggesting they understood the task. Our primary analyses, however, 

concern the trials in which proportional amount and absolute amount were in direct conflict with 

each other, as was the case in Experiment 1 and prior work. We used a Block Type (2: Discrete, 

Continuous) x Block Order (2: Discrete First, Continuous First) ANOVA on the proportion of 

trials children selected the option displaying more than half (i.e., the proportional interpretation 

of most). There was a significant main effect of Block Type, F(1, 118) = 98.90, p < .001, 2
partial 

= 0.24, and a Block x Order interaction, F(1, 118) = 6.18, p =.014, 2
partial = 0.02, but not a 

significant main effect of Order, F(1, 118) = 0.86, p = .356, 2
partial = 0.005.  

Again, given the significant interaction involving block order, and as specified in our pre-

registered plan, we tested our primary hypothesis using a more conservative between-subject 

analysis. A between-subject t-test on the first block children completed also revealed a 

significant difference between Continuous, M = .62, SD = .25, and Discrete, M = .21, SD = .36, 

stimuli, t(106.2) = 7.11, p < .001, d = 1.30 (not assuming equal variances because of a significant 

test of differences between variances). Moreover, children scored significantly above chance on 
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the Continuous trials, t(59) = 3.51, p < .001, and significantly below chance on the Discrete 

trials, t(59) = -6.23, p < .001 (note that this same pattern is found when collapsing across the first 

and  second test block). Thus, even with a between-subject test, we see a significant difference in 

proportional reasoning between discrete and continuous stimuli, with children more often 

successfully selecting the proportion-based response on continuous trials and incorrectly 

selecting the absolute-based more response (which was proportionally less) on the discrete trials. 

Further, the interaction between Block and Order suggests that this difference, though present for 

children who received either order of trials, is reduced in children who completed the continuous 

block first, relative to children who completed the discrete block first (see Figure 6). However, 

neither simple effect was independently significant: children’s performance did not significantly 

differ on the continuous block when it occurred before, M = 0.62, or after M = 0.66, the discrete 

block, t(118) = -0.95, p = .342, d = -0.17 and similarly, children’s performance on the discrete 

block before, M = 0.21, or after, M = 0.35, the continuous block did not significantly differ, 

t(118) = 1.97, p = .052, d = 0.36 (although notably, this small effect is just beyond the 

significance threshold).  
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3.2.2.2 Exploratory Age Analyses 

 When age group is included in the analyses of the first block, there was not a significant 

main effect of age, p = .724, 2
partial = 0.001, or age by block type interaction, p = .114, 2

partial = 

0.021. However, although 6-year-olds performed significantly above chance on continuous trials, 

M = .67, and significantly below chance on discrete trials, M = .18, ps < .001, 5-year-olds’ 

performance did not significantly differ from chance on continuous trials, M = .56, p = .211, and 

was significantly below chance on discrete trials, M = .25, p < .001. Thus, although there are not 

significant age differences (again, potentially because of the relatively low power to detect 

them), interpretating most based on proportion on continuous trials may not be as robust among 

5-year-olds as among 6-year-olds. 

3.2.3 Direct Comparison Across Tasks 

Figure 6: In the Comparison task of Experiment 2, the proportion of trials 

children selected the larger proportion, for the continuous (dark grey; left) and 

discrete (light gray; right) trials, separated based on the order in which children 

received the blocks (x-axis). Points represent means, error bars are standard error 

of the mean, and violin plots display a smoothed kernel density plot of the 

underlying distribution. 
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 To directly compare children’s performance on the verification task to children’s 

performance on the comparison task, we scored children on both tasks based on their 

interpretation of most as “more than half”. On the verification task, children were scored correct 

is they said yes to values above 50% and no to values below 50%, again excluding 0% and 100% 

trials. On the comparison task, children were scored based on the proportion of trials selecting 

the proportion-based response (i.e., the larger proportion) on trials that pit proportional and 

absolute interpretations against each other. Given the significant interactions with order when 

analyzing each task individually, we used the more conservative between-subject analysis on the 

first block of trials only using a Task (2: Verification, Comparison) x First Block Type (2: 

Discrete, Continuous) ANOVA on the proportion correct, where correctness is defined as 

responding in terms of “more than half” (see Figure 7). This analysis revealed a significant main 

effect of Task, F(1, 118) = 131.79, p < .001, 2
partial = 0.53, main effect of First Block Type, F(1, 

118) = 12.53, p < .001, 2
partial = 0.10, and an interaction of Task and First Block Type, F(1, 118) 

= 79.0, p < .001, 2
partial = 0.40.  
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Follow up analyses indicate that children performed better on the verification task than 

the comparison task for both Continuous, Mverification = 0.70, SD = 0.20, Mcomparison = 0.62, SD = 

0.25, t(59) = 2.33, p = .023, d = 0.30, and Discrete blocks, Mverification = 0.85, SD = 0.19, 

Mcomparison = 0.21, SD = 0.36, t(59) = 12.24, p < .001, d = 1.58, with this difference being notably 

larger on discrete trials. Moreover, on the verification task, children had higher scores with 

Discrete, compared to Continuous, stimuli, t(59) = -4.18, p < .001, d = -0.54, but on the 

comparison task, in contrast, children had higher scores with Continuous stimuli, compared to 

Discrete stimuli, t(59) = 6.83, p < .001, d = 0.88.  

Although not pre-registered, we conducted an additional exploratory analysis to examine 

whether children’s performance on the verification and comparison tasks was related, perhaps 

Figure 7: In Experiment 2, the proportion of trials children responded such that “most” is “more 

than half” for the continuous (dark grey; left) and discrete (light gray; right) trials, across the 

Comparison (left) and Verification (right) tasks, on the first block of trials only. Points represent 

means, error bars are standard error of the mean, and violin plots display a smoothed kernel 

density plot of the underlying distribution. 
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more so for continuous than discrete trials because of the use of different strategies across tasks 

for the latter. Thus, we analyzed the correlations between children’s performance on the 

verification and comparison task for each stimulus type, again focused only on the more 

conservative between-subject analysis of the first block of trials. For children who received the 

Continuous Block of trials first, there was a significant correlation between performance on the 

verification and comparison tasks with continuous stimuli, r = .32 95% CI [.07, .53], p = .014. In 

contrast, for children who received the Discrete Block of trials first, there was not a significant 

correlation between tasks with discrete stimuli, r = .02 95% CI [-.23, .27], p = .877. However, 

these correlations are not significantly different from each other z = 1.66, p = .096. 

3.3 Discussion 

Experiment 2 replicated our findings from Experiment 1. However, with this new and 

more naturalistic set of stimuli and a larger sample of older children, not only were children 

more susceptible to an absolute more-based interpretation of most with discrete stimuli, but 

children also reasoned proportionally about most at above chance levels when amounts were 

presented continuously. Together with the age-related pattern in Experiment 1, this suggests that 

a proportional interpretation of most is evident at around 6-years-old when stimuli are continuous 

amounts.  

In addition, and importantly, children’s interpretation of most in a non-comparison 

context, which did not involve competition between absolute and proportional amounts, was 

more nuanced. Overall, in this context, children showed the expected pattern of “yes” responding 

for values more than 50% and “no” responding for values less than 50%. In addition, as 

hypothesized, children’s performance did not benefit from the use of continuous stimuli. In fact, 

for values less than 50%, children were better able to reject the most phrasing for discrete stimuli 
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than for continuous stimuli. Together, these findings suggest that the presence of numerical 

information impedes reasoning about most when a proportional interpretation is required but 

facilitates reasoning about most when an absolute interpretation is sufficient, potentially because 

continuous quantities require approximation whereas discrete quantities provide the opportunity 

to make exact judgements based on counts. 

Lastly, the significant interaction between performance and block order suggests that how 

children draw upon their conceptualizations of proportion might be malleable: increasing the 

saliency of proportion and decreasing the saliency of absolute number through an initial block of 

continuous trials impacts children’s strategy use on the subsequent discrete trials. Moreover, this 

same pattern has been shown in proportional reasoning tasks involving equivalent juice mixtures 

and probabilistic comparisons with game spinners (Boyer & Levine, 2010; Hurst & Cordes, 

2018), further emphasizing that children may be drawing upon their conceptualization of 

proportion in similar ways across contexts, including the current context where children are 

asked questions about most. 

4. General Discussion 

 In the current study, we report two experiments investigating children’s interpretation of 

the quantifier most. Overall, we find that by age 6, children’s difficulty with a proportional 

interpretation of most is likely caused by numerical interference when discrete and countable 

numerical information is available. In contrast, when discrete numerical information was not 

available, a proportional interpretation of most was evident by 6 years old. Furthermore, although 

the presence of discrete numerical information hindered a proportional interpretation of most, 

when absolute numerical information was sufficient for interpreting most correctly (i.e., when an 

absolute comparison was consistent with a proportional comparison), discrete numerical 
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information actually facilitated children’s interpretation of most as not applying to values less 

than half. In other words, it is not the case that continuous stimuli, and the absence of discrete 

number, always facilitates children’s reasoning about most. When an absolute interpretation is 

sufficient (as in the verification task of Experiment 2) reasoning about most in the context of 

continuous areas was more error prone than in the context of discrete quantities. Moreover, in a 

comparison context, younger children (i.e., 5-year-olds) struggled with the interpretation of most 

in reference to continuous stimuli, performing around chance, despite the emergence of 

systematic (albeit, incorrect) reasoning about most in reference to discrete stimuli. Lastly, 

exploratory correlational analyses in Experiment 2 suggest that when presented with continuous 

stimuli, children might be drawing on the same proportional reasoning strategies regardless of 

whether they are required to compare across proportions or within a single proportion. In 

contrast, with discrete stimuli children’s reasoning about most might be more dependent on task 

demands and task-specific heuristics. Together, the pattern of results across both experiments 

suggests that children’s initial understanding of most is fragmented and highly context-dependent 

in ways that reflect their underlying knowledge of different types of quantity.  

4.1 Implications 

 First, the current experiments highlight the importance of considering how children 

reason in the context of different perceptual stimuli and different types of questions to 

understand children’s knowledge and develop theories of cognitive development. In the context 

of assessing children’s quantifier knowledge, Sullivan and colleagues (2018) convincingly make 

the case for considering task demands across different paradigms (e.g., production vs. 

verification vs. comparison). We extend their argument to different stimuli, even within an 

identical paradigm – notably varying whether the stimuli consist of continuous amounts or 
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discrete sets. Our findings, together with the growing literature on proportional reasoning, 

suggest that the distinction between continuous and discrete proportional amounts must be 

considered when studying the development of children’s reasoning about quantifiers such as 

most and more. However, the consideration of this distinction is not unique to children’s 

understanding of quantifiers, but instead is relevant to a range of contexts, including reasoning 

about mixtures (Boyer et al., 2008), probability (Hurst & Cordes, 2018), and resource 

distribution scenarios in social cognition (Hurst et al., 2020).  

Second, these implications are not merely methodological (to the extent that 

methodological concerns are ever mere), but rather have theoretical implications for our 

understanding of children’s quantifier knowledge and proportional reasoning, two important 

domains of cognitive development. In the case of children’s understanding of the quantifier most, 

the current study provides insight into two related, but somewhat distinct, questions: whether, 

and when, children interpret most in terms of proportion and whether children distinguish 

between most and more.  

4.1.1 Interpreting Most in Terms of Proportion 

Overall, we find that children can apply a proportional interpretation of the quantifier 

most by around 6-years-old, but that the proportional interpretation of most is only evident, at 

least at first, with continuous amounts. One possibility for this pattern is that children are using 

entirely distinct interpretations of most across contexts, with different developmental trajectories. 

That is, children may first develop an absolute comparison interpretation of most that applies 

exclusively to discrete sets and is evident by around 4 years old (although other work has shown 

it as early as 3 years old; Halberda et al., 2008). In contrast, it is not until around the age of 6 

years that children develop a proportional interpretation of most that applies (at least at first) 
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exclusively to continuous area-based contexts. An alternative possibility is that children’s initial 

conception of most is proportional, even in young children, but that the saliency of discrete 

numerical information prompts an absolute numerical comparison, interfering with children’s 

ability to demonstrate their proportional knowledge. Investigating even younger children’s 

interpretation of most with continuous stimuli, where an absolute interpretation is available but 

numerical interference is not (i.e., in a comparison task that pits continuous absolute area vs. 

proportional area), will allow us to better understand the emergence of children’s proportional 

understanding of most.  

In either case, however, it is clear from the current study that by 6-years-old children can 

interpret most proportionally and demonstrate this proportional interpretation in some contexts. 

Importantly, future work is needed to better understand the potentially distinct interpretations of 

most for different kinds of quantities, how they develop in tandem, and how children eventually 

come to integrate these different meanings of most into an adult-like interpretation that they can 

apply across context and stimulus type. Furthermore, although exploratory analyses comparing 

5-year-olds and 6-year-olds suggest that it might be around this time that children become able to 

demonstrate their proportional understanding of most in continuous contexts, a more complete 

investigation of age differences with a larger sample across a wider age range would provide a 

better understanding of how children’s knowledge of most develops.  

4.1.2 Distinguishing Most from More 

 Although the current experiments did not directly address children’s understanding of 

more, they contribute to a larger discussion about whether, and how, children distinguish 

between most and more. Notably, demonstrating a proportional interpretation of most in some 

contexts is not sufficient to conclude that children distinguish most and more. In other words, it 
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is possible that children interpret most to mean more but interpret both most and more 

proportionally in some contexts. The feasibility of this hypothesis was tested in a sample of 

adults (see Experiment S1 in Supplemental), which found that adults did interpret both more and 

most proportionally with the continuous stimuli used in Experiment 2. Thus, when the quantities 

have a clearly defined part-whole structure, even the quantifier more might be interpreted 

proportionally. Although it is unclear whether children would show similar flexibility in their 

interpretation of more, if they do interpret more like adults then it may be that children in 

Experiments 1 and 2 did not show absolute interference in the continuous comparison task 

because in this context there is not competition between more and most – both quantifiers lead to 

the same proportional response.  

There are two additional findings from the current study that are worth noting when 

considering whether children treat most and more as synonyms. First, although an absolute 

comparison was all that was necessary to succeed on the verification task in Experiment 2, the 

language used (e.g., “are most of the butterflies colored in?”) is more ambiguous with a “more” 

interpretation than a “most” interpretation. In other words, although “most of the” fully implies 

the reference set (e.g., all the butterflies), “more of the” does not specify an explicit reference set 

(e.g., “are more of the butterflies colored in?” leaves open the question of “more than what?”). 

This contrasts with typical verification tasks that highlight both subsets and the question posed is 

entirely grammatical when substituting more for the word most (e.g., are most [more] of the 

crayons blue or yellow? Halberda et al., 2008). Although it is possible that children used a more 

interpretation and spontaneously inferred the correct reference set, requiring them to do so may 

have made it a more difficult task than when the reference set is specified. Future work with the 

goal of distinguishing most and more could investigate whether children readily infer the 
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comparison set for more, or whether difficulty with this inference in our verification task 

provides evidence against the possibility that they are interpreting most as synonymous with 

more.   

Second, we found that children under 6 years were not systematic in their most 

judgements of continuous amounts, neither responding primarily in terms of absolute amounts 

nor primarily in terms of proportion. This finding suggests that children’s initial interpretation of 

most is more limited than their understanding of more. Prior work has found that children 

younger than those tested here can readily interpret more to compare both discrete and 

continuous amounts (Odic et al., 2013). Thus, if younger children were truly interpreting most as 

a synonym for more, then the children in our study should have made consistent judgements of 

most with both discrete and continuous stimuli, which was not the case.  

Together, these patterns emphasize the need for research that separately addresses 

questions about children’s proportional interpretation of most from questions about whether 

children treat more and most synonymously. The current study focused on the first question, 

concluding that children can interpret most proportionally by at least 6-years-old, while leaving 

open whether this interpretation of most is truly distinct from their interpretation of more.  

4.1.3 Proportional Reasoning More Generally 

Finally, in terms of proportional reasoning, numerical interference in discrete 

proportional reasoning has been extensively studied for both symbolic (e.g., fractions) and non-

symbolic proportions (e.g., visual representations) across a range of developmental age groups 

(e.g., Alonso-Díaz et al., 2018; Alonso-Díaz & Penagos-Londoño, 2021; Boyer et al., 2008; 

Hurst & Cordes, 2018; Ni & Zhou, 2005). Our findings extend this research in two ways.  First, 

we replicate the typical numerical interference effect in a new domain, namely interpretation of 
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the quantifier most.  Second, and more importantly, we show that when the possibility of 

numerical competition is eliminated, as in the verification task used in Experiment 2, discrete 

information is actually helpful, potentially because it provides a way for children to be more 

exact about their judgements. By understanding the context-dependence of proportional 

reasoning across different domains, we can better understand children’s successes and failures in 

proportional reasoning and how they impact the many contexts of human cognition that rely on 

processing proportional information.  

4.2 Conclusion 

In summary, the current study reveals that by at least 6-years-old children can understand 

the semantics of a quantifier that requires proportional reasoning, but children’s interpretation of 

most is nuanced and depends on the need to reason proportionally and the format of the 

quantities involved. When proportional reasoning is not required, as in our verification task, even 

young children may appear to have mature understanding of most and perform better when they 

can make comparisons based on the number of objects in two sets than when they must compare 

continuous amounts.  In contrast, when proportional reasoning is required, children perform 

better when stimuli consist of continuous amounts rather than discrete quantities, because the 

former eliminate numerical interference, a known impediment to proportional reasoning. Thus, 

children may use context-specific interpretations of most: proportional interpretations in 

continuous contexts, but absolute interpretations in numerical contexts. These differing 

interpretations either facilitate or interfere with performance, depending on task demands. By 

using stimuli that include both discrete and continuous amounts, we can broaden our 

understanding of the development of quantifier knowledge. Furthermore, this is not unique to 

quantifier knowledge, but also other domains of cognitive development that rely on the ability to 
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make inferences based on proportional information, a kind of reasoning that is ubiquitous in 

everyday life as well as in specialized domains within Science, Technology, Engineering, and 

Math (i.e., STEM).  
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