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Abstract 

When proportional information is pit against whole number numerical information, 

children often attend to the whole number information at the expense of proportional 

information (e.g., indicating 4/9 is greater than 3/5 because 4 > 3). In the current study, 

we presented younger (3-4-year-olds) and older (5-6-year-olds) children a task in which 

the proportional information was presented either continuously (units cannot be counted) 

or discretely (countable units; numerical information available). In the discrete 

conditions, older children showed numerical interference: responding based on the 

number of pieces instead of the proportion of pieces. However, older children easily 

overcame this poor strategy selection on discrete trials if they first had some experience 

with continuous, proportional strategies, suggesting this prevalent reliance on numerical 

information may be malleable. Younger children, on the other hand, showed difficulty 

with the proportion task, but showed evidence of proportional reasoning in a simplified 

estimation-style task, suggesting that younger children may still be developing their 

proportional and numerical skills in task-dependent ways. Lastly, across both age groups, 

performance on the proportional reasoning task in continuous contexts, but not discrete 

contexts, was related to more general analogical reasoning skills. Findings suggest that 

children’s proportional reasoning abilities are actively developing between the ages of 3 

and 6 and may depend on domain general reasoning skills. We discuss the implications 

for this work for both cognitive development and education. 

Keywords: proportional reasoning; whole number bias; analogy; discrete and 

continuous contexts 
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Attending to Relations: Proportional Reasoning in 3- to 6-year-old Children 

Learning fraction concepts can be a difficult task for many students (e.g., National 

Mathematics Advisory Panel, 2008). Children make both procedural and conceptual 

errors that remain pervasive even in later school grades and into adulthood (e.g., Christou 

& Vosniadou, 2012; National Mathematics Advisory Panel, 2008; Ni & Zhou, 2005; 

Lorti-Forges, Tian, & Siegler, 2015; Vamvakoussi & Vosniadou, 2010). However, 

fraction concepts have been shown to be an important gatekeeper to many later math 

skills (Booth & Newton, 2012; Siegler et al., 2012), making it important to understand 

the specific difficulties children face and how they may be rectified.  

These difficulties with formal fraction understanding are surprising given that 

intuitive reasoning about visually presented proportional information seems to be an early 

developing skill, with evidence suggesting that even preverbal infants (e.g., Denison & 

Xu, 2010; McCrink & Wynn, 2007) can process proportional information when presented 

non-symbolically. Infants as young as 6-months-old have been shown to keep track of the 

ratio between discrete items (McCrink & Wynn, 2007) and slightly older infants use this 

ratio information to make probabilistic inferences (Denison, Reed, & Xu, 2013; Denison 

& Xu, 2010). For example, infants are surprised when an experimenter randomly pulls a 

red ball from a bin that contains mostly white balls (but some red balls), suggesting that 

infants track the likelihood of probabilistic outcomes (e.g., Denison, Reed, & Xu, 2013). 

Despite this early developing proportional reasoning, children show systematic 

errors in their processing of visual proportional information. For example, Jeong, Levine, 

and Huttenlocher, (2007) taught 6-10-year-old children a probability game in which they 

spun a spinner with two colored sections (red and blue).  If the spinner landed on red, 
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they would win stickers but if it landed on blue, they would lose stickers. Children were 

then shown pairs of spinners and were asked to judge which spinner was more likely to 

result in a winning spin. When the probabilistic information presented on the spinners 

was continuous (i.e., the spinner contained only one large red portion and one large blue 

portion that were not divided up into smaller discrete pieces), children performed above 

chance on these judgments. However, when the red and blue sections on the spinner were 

divided into discrete, countable pieces (see Figures 1A and 1B for examples of discrete 

and continuous spinners), children performed at chance levels (Jeong et al., 2007). Based 

on these and similar findings, researchers posit that when discrete countable information 

is available, children ignore the relation between the number of red and blue pieces, 

focusing instead on the more salient “numerator”—the total number of winning red 

pieces, turning a proportional task into a counting one (Boyer et al., 2008; Jeong et al., 

2007). Importantly, since children succeed (i.e., select the spinner with the greater 

proportion of red) when presented with continuous spinners, but not when presented with 

discrete spinners, this points to poor strategy selection in the presence of specific 

perceptual features, rather than an inability to process proportional information.  

Over-attention to whole number information at the expense of proportional 

information has also been noted when children and adults process symbolic fractions – a 

phenomenon referred to as a “whole number bias” (e.g., Alibali & Sidney, 2015; Ni & 

Zhou, 2005). For example, when judging the relative magnitude of two fractions, people 

often attend to the relative magnitudes of the whole number components (DeWolf & 

Vosnaido, 2015), while ignoring the relationship between the numerator and denominator 

(Bonato, Fabbri, Umilta, & Zorzi, 2007), resulting in poor fraction processing.  
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Thus, interference of discrete numerical1 information with relational information 

processing is pervasive across both symbolic and non-symbolic representations of 

proportion in children. Yet, importantly, children’s spontaneous attention to relational 

information has been shown to be an important predictor of formal fraction ability (e.g., 

McMullen, Hannula-Sormunen, Laakkonen, & Lehtinen, 2016), making it critical that we 

understand what factors impact whether a child is likely to focus on relational 

information or instead rely upon discrete numerical information when engaging in 

proportion tasks. This knowledge can inform our understanding of the difficulties 

children may encounter when first learning fraction notation, including early precursors 

to the whole number bias.  

In the current study, we aimed to investigate what factors may impact children’s 

strategy selection (i.e., relational reasoning vs. counting) when engaging in discrete 

proportional tasks. To do this, we explored the impact of four distinct factors thought to 

impact proportional thinking: (1) direct instruction, (2) prior experience, (3) age (as a 

proxy for numerical ability), and (4) analogical reasoning with visual patterns.  

We hypothesized that children’s focus on the absolute number of red pieces, 

instead of on the relation between the number of red to blue pieces, may be the result of 

an over-attention to the salient “winning” pieces, leading them to ignore other relevant 

aspects of the display (the blue pieces, total number of pieces, and/or the relative sizes of 

the pieces). Thus, in our study we explored whether instructing children to pay attention 

 
1 Throughout this paper, we will use the term “number” or “numerical” to specifically 

refer to whole-number quantities. Although fractions and proportional amount are also 

defined as numerical quantities, in this context we will refer to these quantities as 

“proportion” or “proportional” and whole number quantities as being “number” or 

“numerical”. 
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to the total amount of both the red and the blue pieces makes children more likely to 

focus on the relation between these two amounts.  

We also explored whether experience focusing on proportional information, in the 

absence of conflicting whole number information in continuous trials, may promote the 

use of relational strategies on subsequent discrete trials. Thus, we varied the order of 

continuous and discrete spinner blocks in our task, allowing us to assess whether 

experience on continuous trials promotes performance on subsequent discrete trials. One 

recent study suggests some promise for this approach in older children; 4th graders (but 

not 2nd graders or kindergarteners) were less likely to rely on numerical strategies on 

discrete proportional tasks if initially exposed to practice with continuous proportion 

(Boyer & Levine, 2015).  

A focus on number in the context of a proportional task may be driven by an 

overall increased focus on whole numbers and counting.  If so, then younger children 

(e.g., preschoolers), for whom numerical information may be less salient because they are 

still in the process of mastering the counting procedure and have yet to encounter formal 

mathematical tasks in school, may be less likely to be swayed by whole-number 

numerical information.  Some evidence suggests preschoolers prefer relational 

information when put in conflict with whole number information (Sophian et al., 1995), 

however other studies report that 3-4-year-olds do not use proportional information to 

make inferences about probabilistic outcomes (Girotto, Fontanari, Gonzalez, Vallortigara, 

& Blaye, 2016). Thus, there are still several open questions about how (and whether) 

children this age process proportional information. In the current study, we used an 

identical paradigm with 3-4- and 5-6-year-old children in order to explore strategy 
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selection in a discrete proportion task across varying levels of numerical abilities. In 

addition, since the proportional reasoning abilities of these younger children are still 

unclear, we wanted to investigate children’s ability to think about probability in two 

contexts: comparing probabilities and predicting outcomes. In this way, we can better 

look at the development of proportional reasoning through both decision-making type-

tasks (e.g., which spinner is better?) and in estimation type tasks (e.g., what do you think 

will happen and how sure are you?) across these distinct age groups.  

Lastly, given the importance of early proportional reasoning in predicting formal 

fraction ability (McMullen et al., 2016), we were also interested in factors that may 

contribute to individual differences in this ability. Little is known about the cognitive 

correlates of proportional understanding in young children before they have been 

introduced to formal fractions. Given that proportional thinking requires the 

consideration of the relation between two quantities, it may be that a domain-general 

ability to abstract relational information is a necessary component of engaging in 

proportional reasoning. In fact, a proportion is a form of analogy by definition, requiring 

an ability to abstract the relation between two quantities (e.g., the relation 20:25 is the 

same as the relation 4:5), much like analogical reasoning requires an ability to abstract 

the relation between two entities (e.g., cat:meow as dog:?). Furthermore, analogical 

reasoning emerges very early in development (e.g., Ferry, Hespos, & Gentner, 2015) and 

has been found to be a critical component of learning across many domains (English, 

2004; Richland & Simms, 2015). We hypothesized that general analogical reasoning 

(outside the domain of proportions) may be a critical predictor of proportional 

processing. Thus in the current study, we explored whether children’s general analogical 
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reasoning abilities was related to children’s ability to reason proportionally across 

contexts.  

 In the current study we investigated 3-6-year-old children’s proportional 

processing using a spinner paradigm modeled after Jeong et al. (2007). The focus of our 

study was to explore factors that contribute to and/or diminish the use of whole-number 

strategies when engaging in a proportional task. Our study addressed four open questions: 

(1) Does drawing children’s attention to both parts of a proportional display through 

direct instruction promote proportional thinking? (2) Does experience attending to 

proportional information diminish the engagement of numerical strategies in a 

proportional task? (3) Are younger children (3-4 year olds), who have limited numerical 

abilities and thus may find numerical information less salient, more likely to succeed in a 

discrete proportional task? (4) Are individual differences in proportional reasoning 

correlated with general analogical reasoning skills?  

Method 

Three-to-six year old children participated in three distinct tasks – the spinner 

comparison task, a single spinner task (requiring children to judge the outcome of a spin 

on a given spinner and indicate their confidence in that outcome), and an analogical 

reasoning task. During the spinner comparison task, half of the participants received 

direct instruction, highlighting attention to the relative size of the red and blue portions of 

the spinner, whereas the other half of participants did not. Moreover, the order of 

presentation of the continuous and discrete blocks of trials was counterbalanced across 

participants, allowing an exploration of the effect of order on performance.    

Participants 
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Two groups of children: Younger Children (3-4 year-olds; N=91; Range: 3.2 to 4.9 

years, M=4.2 years, 45 females) and Older Children (5-6-year-olds; N=89; Range: 5.1 to 

6.8 years, M=5.9 years, 42 females) were included in the study. An additional seven 

children participated, but were excluded because of experimenter or computer error 

(N=6) or an inability to differentiate the colors used in the task (N=1). 

Children were recruited from the greater Boston, MA area and were tested at local 

museums (Museum of Science, Boston and Boston Children’s Museum), day cares, 

preschools, and after school programs, as well as in the laboratory. In accordance with 

the guidelines of each testing facility, children received a sticker and/or small prize for 

participating.  Demographic information was not systematically collected for children 

tested outside of the laboratory. For children whose parents reported demographic 

information within the laboratory, the sample was predominantly white and educated, 

approximately as follows: 72% White, 7% Asian, 2% Native Hawaiian/Pacific Islander, 

2% Black or African American, and 17% mixed race. In addition, about 15% reported 

being Hispanic. Of those who reported their education, all mothers had at least a 

Bachelor’s degree and 68% had a Master’s degree or higher. Although demographic 

information was not systematically collected, the demographics of children participating 

outside of the laboratory are expected to be comparable to those collected in our 

laboratory.  

In addition, a sample of 7-8 year-old children (N=88; Range: 7.1 to 8.9 years, 

M=7.9 years, 51 females) was collected, but these children performed at ceiling on the 

tasks (75% of children responded correctly on at least 14/16 trials) and so are not 

included in the analyses (see the Appendix for more information about these children).  
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Design 

The Boston College Institutional Review Board approved all study procedures 

(protocol 10.064, Development of Quantity Concepts) and all parents provided informed 

consent for their child’s participation. Children over the age of 7 also provided written 

assent.  

This study involved a 2 (Training Condition) x 2 (Block Order) between-subjects 

design, such that children were randomly assigned to one of four between-subject 

conditions: Training & Continuous First (N=26 Younger; N=23 Older); Training & 

Discrete First (N=20 Younger; N=21 Older); No Training & Continuous First (N=22 

Younger; N=23 Older); and No Training & Discrete First (N=23 Younger; N=22 Older). 

These sample sizes are in line with other studies using the same or similar paradigm and 

investigating similar effects (Boyer & Levine, 2015; Jeong et al., 2007). Based on this 

prior work, we expected medium to large effects of numerical interference (manipulated 

within subject) and of block order (manipulated between subject). Thus, these sample 

sizes within each simple comparison of interest are sufficient to detect medium effects 

with approximately 70% to 90% power. We were unsure of the expected effect sizes of 

the training and the relation between proportion and analogy.  

All task components except the spinner orientation were presented on a Mac 

Laptop with a 13-inch screen using Xojo programming software. The experimenter 

recorded all responses using the laptop by pressing the corresponding keys on the 

keyboard. Each child received two blocks of spinner trials. Each block consisted of: (1) 

Spinner orientation, (2) Training (if applicable), and (3) Spinner Comparison. Following 

the completion of both blocks (one discrete and one continuous), children then 
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participated in two additional tasks. Thus, children participated in the following tasks in a 

single experimental session lasting approximately 15 minutes: (1) Spinner Comparison 

Task: Block 1 (consisting of: Spinner orientation, Training (if applicable), Spinner 

Comparisons) and Block 2 (consisting of: Spinner orientation, Training (if applicable), 

Spinner Comparisons), (2) Single Spinner Task, and (3) Pattern Analogy Task.  

Measures 

1. Spinner Comparison Task  

Orientation: Prior to each set of comparison trials, children were oriented to an 

actual cardboard spinner (radius of 7.8cm), half of which was red and half was blue. The 

discrete spinner was broken into quarters, with the diagonally opposite quarters (i.e., non-

consecutive) being the same color. Each circle had a black arrow (6.8cm long) that could 

be spun around the center of the circle.  Children were initially given three stickers and 

were told that the experimenter would spin the arrow around the spinner and if the 

spinner landed on red the child would win another sticker and if the spinner landed on 

blue then the experimenter would take one of the child’s stickers away. Then, the 

experimenter spun the spinner twice, each time behaving in accordance with where the 

spinner landed (i.e., either giving the child another sticker or taking one away). 

Training: Following the orientation, children in the Training group participated in 

a brief instructional phase during which they were shown a single donut shaped spinner 

on the computer and were told that they were going to “figure out how to decide what is a 

good spinner and what is a bad spinner”. Children were then asked how much red there 

was on the spinner, how much blue was on the spinner, and whether that meant it was a 

“good” spinner or a “bad” spinner. Children were encouraged to use the words “a little” 
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(meaning, less than 50%) or “a lot” (meaning, more than 50%) when describing the 

amount of each color. If children gave specific number words (e.g., “two pieces”), they 

were asked whether it was a little or a lot in order to promote continuous, relational 

information as opposed to numerical information. If children used the words “a little” or 

“a lot” differently than intended or were incorrect about the spinner being “good” or 

“bad” (meaning, more or less than 50% chance of “winning”, respectively) they were 

corrected. Children were then provided with an explanation as to why it was a good 

spinner or bad spinner (e.g., “It’s a good spinner, because there is a lot of red and only a 

little bit of blue!”).  

Children in the Training group went through two training trials before each block, 

one with a good spinner (more red than blue) and one with a bad spinner (more blue than 

red).  Children in the No Training group did not have any additional training and instead 

proceeded straight to the comparison trials.    

Comparison Trials: During the comparison trials, children were shown two 

spinners on the computer screen. The spinners were presented as the same donut-shape as 

the actual spinners used during orientation, but did not include an arrow and were not 

spun or acted upon. Instead, children were asked to indicate which spinner would help 

them win more stickers (i.e., the spinner with the greater likelihood of landing on red). 

Children were prompted to point to the spinner (either on the left or on the right) and the 

experimenter recorded the child’s responses by pressing corresponding keys on the 

keyboard. The spinners remained visible until the experimenter recorded the child’s 

response.  
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The discrete spinners and continuous-matched spinners were presented in two 

separate blocks of 8 trials each. Between the discrete and continuous blocks (order 

counterbalanced across children), children were also told “this time, the spinners look a 

little different, but they work the same way: if the spinner lands on red you win a sticker 

and if it lands on blue I take a sticker away”.  

The same proportion values were used for both the discrete and continuous blocks.  

So, for example, if a discrete trial involved a comparison of 2/5 vs. 5/9, then a continuous 

trial involved the same comparison magnitudes. Within the discrete block, half the trials 

were numerically consistent (meaning that the spinner with proportionally more red also 

had numerically more red pieces; e.g., 2/5 vs. 5/9) and half of the trials were numerically 

misleading (meaning that the spinner with proportionally more red pieces had 

numerically fewer red pieces, such that comparing the number of red pieces and 

comparing the proportion of red across spinners would provide different answers; e.g., 

4/9 vs. 2/3). Thus, we manipulated the consistency of whole number and proportional 

information during the discrete spinner blocks.  The continuous blocks did not provide 

whole number information, but trials in the continuous blocks were matched to the 

specific proportions provided in the discrete block.  Thus, continuous trials were divided 

into continuous consistent-matched trials and continuous misleading-matched trials based 

upon the specific proportions presented.  

The numerically consistent comparisons presented were: 2/6 vs. 5/8; 5/7 vs. 8/9; 

4/9 vs. 1/5; 3/6 vs. 5/8. The numerically misleading comparisons presented were: 2/3 vs. 

3/9; 1/3 vs. 2/9; 5/10 vs. 4/5; 3/5 vs. 4/9. The ratios between the two proportions 

presented across trials ranged from 1.25 to 2.2, with an average ratio of 1.65 for the 
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magnitudes used in consistent trials and 1.61 for magnitudes used in the misleading trials. 

In order to prevent surface area from being a relevant cue for discrimination, we used 

three different sizes of spinners: Small (diameter of 6.1cm), Medium (diameter of 8.8cm), 

and Large (diameter of 11.4cm).  Within each block of eight trials, two trials involved a 

Small-Large comparison, two trials involved a Medium-Large comparison, and four trials 

involved a Small-Medium comparison. On half the trials, the larger spinner was the 

correct answer and on the other half the smaller spinner depicted the greater proportion of 

red, making size an unreliable cue for responding. The order of the trials within each 

block was randomized across participants.   

2. Single Spinner Estimation  

Following both spinner comparison blocks, children were presented a single donut 

shaped spinner and asked to decide whether they thought the spinner would land on blue 

or land on red when spun (the spinners were never actually spun). Following each 

decision, children were asked how sure they were that the spinner would land on that 

color by selecting one of five faces representing “Not sure at all/just guessing” to being 

“Really, really sure” (see Figure 1C).  

 There were six single spinner trials.  Three spinners were discrete and three were 

continuous. Two of the spinners were small, three of the spinners were medium-sized, 

and one was large. The order of the trials was randomized across participants. The 

specific magnitudes presented were: 8/9, 2/6, 3/5 (discrete) and 1/5, 4/9, 2/3 (continuous). 

3. Pattern Analogy Task  

Lastly, children participated in the Pattern Analogy task (modeled after Goswami, 

1989). The task consisted of two practice trials followed by six test trials, all of the form 
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A:B → C:?. Children were presented with three pictures at the top of the computer 

screen, two on the left (A:B; e.g., Yellow Diamond: Yellow Circle) and one following a 

black arrow and followed by a question mark (→C:?; e.g., Red Diamond: ?). At the 

bottom of the screen were five picture options, which differed from the given analogy in 

specific ways: (1) the same as B (e.g., Yellow Circle), (2) the correct shape but incorrect 

color (e.g., Blue Circle), (3) the correct color but incorrect shape (e.g., Red Square), (4) 

the same as C (e.g., Red Diamond), and (5) the correct answer (e.g., Red Circle; see 

Figure 1D for an example). During the practice trials, the experimenter covered up the 

options with a piece of paper and helped the child through the trial by asking the child 

what was the same and what was different in the A:B pair (e.g., yellow circle, yellow 

square: both are yellow, but one is a circle and one is a square). Then, children were 

instructed to pick the picture that went in the spot with the question mark in order to 

make the two sides match. After going through the pattern, the experimenter revealed the 

options and asked the child to choose. After the child selected, they were given feedback 

and an explanation (e.g., “The red square goes with the red circle, so that they’re both red 

but one is a circle and one is a square just like the other pictures”). Following the two 

practice trials, children were presented six test trials in which they did not receive any 

feedback.  

The order of the five options was randomized across trials, but was the same for 

each child. The order of the practice trials was identical across children, but the order of 

the test trials was randomized. All shapes were inside a small white box (27.0 cm2) and 

approximately the same size.  
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Figure 1: Example Stimuli  

 

 

 

 

 

 

 

 

 

 

Figure 1: Example stimuli from each task: An example of a discrete spinner (Panel 

A) and a continuous spinner (Panel B) like those used in the comparison task and in the 

single spinner task; the scale children used to respond about their confidence level of the 

single spinner estimation trials (Panel C; note that the experimenter verbally read the 

question and explained the response scale); and an analogy problem with the options 

children were given to choose from along the bottom (Panel D). 

Data Scoring 

Accuracy was the primary dependent variable on all tasks. All children included in 

the analyses completed both spinner comparison blocks (discrete and continuous). One 

child in the younger group did not complete the Single Spinner task because of time 

constraints and that child’s data were excluded from those analyses. Twenty-seven 

younger children and nine older children did not participate in the Pattern Analogy task 

Panel A:  

Discrete Spinner 

Panel B:  

Continuous Spinner 

Panel C:  

Confidence Estimation 

Panel D: Pattern Analogy task with options 
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because of time constraints, loss of attention during the task, or lost data due to computer 

error (N=1). Thus, a total of 142 children (N=62 younger and N=80 older) had complete 

data across all tasks. Notably, since these data are likely not missing at random (children 

with lower attention spans probably had a higher likelihood of not completing the Pattern 

Analogy task), regression analyses should be interpreted with this limitation in mind.   

Results 

Spinner Comparison Task 

First, children in both age groups performed significantly above chance in the 

continuous block of the spinner comparison task (Younger: M (SE)=59% (2.6), t(89)=3.4, 

p<0.005; Older: M (SE)=80% (2.2), t(88)=13.4, p<0.001), revealing that on average 

children were able to engage in proportional reasoning. However, as a group, the younger 

children were only slightly above chance and a closer look at these children suggests that 

many of them did not perform above chance. Differences between these children are 

discussed after the main analyses.  

 Accuracy scores on the spinner comparison task were subjected to an ANOVA 

with Block type (2: Discrete, Continuous-Matched) and Trial Type (2: Misleading, 

Consistent) as repeated measures and Age Group (2: Younger, Older), Training (2: Yes, 

No), and Order (2: Continuous First, Discrete First) as between-subject factors. Analyses 

revealed a small main effect of Training (F(1,172)=5.1, p = 0.026, partial η2 = 0.03), with 

those who received training (M (SE)=72% (2)) outperforming those who did not (M 

(SE)=65% (2)).  However, training did not significantly interact with any other variables 

(ps>0.05). In line with previous studies, analyses revealed a numerical interference effect, 

as indicated by a significant Block Type X Trial Type interaction (F(1,172) = 13.03, p < 
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0.001, partial η2 = 0.07), revealing that children relied upon numerical information when 

it was available, performing better in discrete trials (compared to magnitude matched 

continuous trials) when numerical information was consistent (MContinuous (SE)=66% (2.1), 

MDiscrete(SE)=71% (2.4); p = 0.04) but performing worse in discrete trials (relative to 

magnitude matched continuous trials) when numerical information was misleading 

(MContinuous (SE)=72% (2.1), MDiscrete  (SE)=65% (2.1); p = 0.01)2.  

Furthermore, these factors (Block Type X Trial Type) significantly interacted with 

age group (three way interaction: F(1,172)=11.9, p < 0.001, partial η2 = 0.07) and Age 

Group X Order (four way interaction: F(1,172)=4.5, p = 0.034, partial η2 = 0.03). Given 

that the interference effect (seen in the Block Type x Trial Type interaction) differed 

across both age and block order, we looked at the impact of order, block type, and trial 

type in the younger and older groups separately using two 2 x 2 x 2 ANOVAs.   

Analyses of data from the older children revealed both a Block Type X Trial Type 

interaction (F(1, 87)=25.1, p<0.001, partial η2=0.2) and an Order X Block Type X Trial 

Type interaction (F(1, 87)=7.3, p=0.008, partial η2=0.08). These interactions indicated 

that performance in the older group was significantly impacted by whole number 

information on the discrete trials, but this interference differed depending on which block 

 
2 It is worth noting that although it appears as though performance on the continuous 

“misleading” trials is higher than continuous “consistent” trials, this difference does not 

have a meaningful interpretation within the context of our manipulation (since the 

“misleading” and “consistent” manipulation is non-existent in the continuous trials). 

Rather, any differences here may reflect unintended differences between the specific 

stimuli and ratio comparisons used for these trials. However, we matched the specific 

magnitudes across the continuous and discrete trials specifically to control for this 

possibility of ratio differences. Moreover, the direction of this effect is the opposite of the 

numerical interference effect. Thus, this unintended difference in stimuli is not the cause 

of the numerical interference effect, and if anything may be muting the numerical 

interference effect reported here. 
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of trials children received first. Specifically, older children who received the discrete 

block prior to the continuous block demonstrated the expected numerical interference 

effect (Block Type X Trial Type interaction: F(1, 42)=22.97, p<0.001, partial η2=0.4; see 

Figure 2, left panel). That is, performance was higher on discrete trials (compared to the 

equivalent continuous trials) when whole number information was consistent (MDiscrete 

(SE)=87% (3.5) vs. MContinuous (SE) = 80% (3.2); t(42) = -2.23, p = 0.03, Cohen’s d = 

0.34) and lower (compared to the equivalent continuous trials) when whole number 

information was misleading (MDiscrete (SE)= 62% (4.9) vs. MContinuous (SE)=89% (2.8); 

t(42) = 4.48, p <0.001, Cohen’s d = 0.68). On the other hand, data from older children 

who received the continuous block first only showed a marginal Block Type X Trial 

Type interaction F(1, 45)=3.6, p=0.06, partial η2=0.08 (see Figure 2, right panel), with no 

statistically significant difference in performance on discrete and continuous-matched 

trials when numerical information was misleading (MDiscrete (SE)=76% (4.46), MContinuous 

(SE) =80% (4.0); t(45)=0.94, p=0.35, Cohen’s d = 0.14) or when whole number 

information was consistent (MDiscrete (SE) = 78% (4.0), MContinuous (SE) = 72% (4.2); 

t(45)=1.41, p=0.17, Cohen’s d = 0.2).  

Analyses of data from the younger group, on the other hand, revealed no main 

effects or interactions (ps>0.1; see Figure 3). That is, data from the younger group, in 

contrast to their older peers, did not reveal evidence of a statistically significant 

numerical interference effect. 

 

 

 



Attending to Relations 

 20 

Figure 2: Older children’s Performance on Spinner Comparison Task 

 

 

Figure 2: Older children’s performance on the spinner comparison task separated 

into children who received the discrete block first (left) and children who received the 

continuous block first (right).  

Figure 3: Younger Children’s Performance on Spinner Comparison Task 

 

 

 

 

 

 

Figure 3: Younger children’s performance on the spinner comparison task, across all 

children regardless of the order in which they received the blocks. 
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 However, this younger group also performed much worse than the older group. 

Although, on average, they performed significantly above chance (M=59% on continuous 

trials), a closer look at these children reveals stark individual differences with many 

children performing below 50% correct. In order to investigate what might be happening 

with these younger children, we restricted additional analyses to data from only those 

children who scored above chance on the continuous trials (>50% correct), who 

demonstrated some understanding of the task demands and of continuous proportional 

information (N=49; Mage=4.2 years; Range 3.3-4.9 years; MContinuous=77%; Range: 63% to 

100% correct). Using a Block Type (2: Discrete, Continuous) X Trial Type (2: 

Consistent, Misleading) repeated measures ANVOA with Order (2: Continuous First, 

Discrete First) as a between subject comparison on only this subset of data, there was a 

main effect of block type, F(1, 47) = 7.45, p=0.009, partial η2=0.137, with lower 

performance on the discrete trials (M=70%) than the continuous trials (M=77%). 

However, there were no other significant main effects or interactions (p’s>0.1), revealing 

that these younger children performed worse on both numerically misleading trials and 

numerically consistent trials, relative to performance on continuous-matched trials 

(Misleading: MContinuous (SE)= 77% (2.6), MDiscrete (SE) =66% (3.8); Consistent: MContinuous  

(SE) = 78% (2.5), MDiscrete  (SE) = 74% (3.9)). Thus, data from younger children who 

performed above chance on the continuous trials still did not provide evidence of a 

numerical interference effect, but rather performed worse on discrete trials overall.  

Single Spinner Trials 
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 In addition to children’s ability to compare probabilities (in the comparison task), 

we were interested in investigating children’s abilities to predict the outcome of single 

probability events and whether the uncertainty of these probabilities was reflected in 

children’s confidence judgments about the outcome. We did this by looking at 

performance on the single spinner trials in which children were asked to judge which 

color they thought the spinner would land on (i.e., what color had the highest 

probability). On average, both younger, M(SE) =70.1% (2.4), and older, M(SE)=89.8% 

(1.6), children performed above chance (50%; Younger: t(89) = 8.29, p<0.001; Older: 

t(88) = 25.2, p<0.001), but the older group outperformed the younger group (t(152.98) = 

6.83, p<0.001)3. Given the poor performance of the younger group on the comparison 

task, it is worth noting that even those younger children who performed at or below 

chance on the continuous trials of the comparison task (N = 41) also performed 

significantly above chance on the single spinner trials, M (SE) = 67% (3.7), t(40) = 4.5, 

p<0.001. 

 Children’s confidence judgments were analyzed by computing a slope between 

confidence judgments and how far the ratio of the spinner was from 50% (i.e., the highest 

level of uncertainty). A positive slope would indicate that the child adjusted their 

confidence judgments based on the degree of uncertainty in the spinner. That is, the 

further the probability was from 0.5, the higher confidence the child reported. Thirty-six 

children are excluded from these analyses: one younger child for experimenter error, as 

well as 15 younger and 20 older children for responding with the same confidence rating 

 
3 Note that although both continuous and discrete trials were included in this task, they 

were not perfectly matched on magnitude, making it impossible to make direct 

comparisons of performance on these two trial types.  
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on every trial (generally highest confidence).  On average, data from younger children 

did not reveal statistically significant positive slopes, either on all trials (Mslope(SE) = 0.09 

(0.1), t(73)=0.85, p=0.4, Cohen’s d = 0.1) or on correct trials only (Mslope(SE)=0.08 

(0.18), t(71)=0.65, p=0.65, Cohen’s d = 0.05). Older children, however, did produce 

confidence judgments with significantly positive slopes on both correct trials 

(Mslope(SE)=0.59 (0.13), t(68)=4.6, p<0.001, Cohen’s d =0.56) and across all trials 

(Mslope(SE)=0.60 (0.12), t(68)=4.9, p<0.001, Cohen’s d =0.59). 

Predicting Analogical Reasoning  

Our primary interest was whether children’s performance on proportion-based 

tasks was related to their more general ability to reason about patterns analogically and 

whether this depended on the context of the proportional reasoning. Thus, we computed 

partial correlations between pattern analogy scores (calculated as proportion correct, 

although see the appendix for an alternate scoring system that takes into account the type 

of errors children made) and comparison scores on discrete trials, comparison scores on 

continuous trials, and a measure of the interference effect, controlling for age4 and the 

other measures (see Table 1 for means and standard deviations of each measure). Our 

interference measure was calculated as: performance on numerically consistent discrete 

trials – performance on numerically misleading discrete trials. If children consistently 

relied upon numerical information, then this value should be close to 1 (near ceiling on 

consistent trials and near floor on misleading trials), whereas if children did not rely upon 

numerical information when making their judgments, this value should be near zero 

(about equal performance, regardless of the nature of the discrete information).  

 
4 Age was treated categorically for consistency across analyses. However, an identical 

pattern of results is found when age is treated continuously.  
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Table 1: Descriptive Statistics for Correlational Analyses 

  Mean Proportion Correct (SE) 

N Pattern Analogy Discrete Trials Continuous Trials Numerical Interference 

Younger 

Children  

62 0.22 (0.03) 0.64 (0.03) 0.59 (0.03) -0.024 (0.04) 

Older 

Children  

80 0.58 (0.03) 0.75 (0.02) 0.80 (0.02) 0.13 (0.05) 

 

Accuracy on the Pattern Analogy task (when controlling for age and the other 

measures) was significantly correlated with performance on continuous proportion trials 

(r = 0.2, p = 0.019), but not with performance on discrete proportion trials (r = 0.006, p = 

0.79) or numerical interference scores (r = -0.08, p = 0.33).  

Discussion 

 The current study investigated 3-6-year-old children’s attention to relational 

versus whole number information in discrete probabilistic contexts. In particular, we 

aimed to investigate whether specific context effects and individual differences may 

impact children’s strategy selection when proportional information is presented 

discretely, as opposed to continuously. In doing so, the current data reveal substantial 

insights into the malleability of children’s attention to whole number information when 

making proportional judgments and how individual differences in proportional reasoning 

may be related to more domain general skills.  

The current study was the first to investigate numerical interference using this 

paradigm with 3- and 4-year-olds. Although as a group they performed slightly (and 

significantly) above chance on the comparison task, many children (approximately 50%) 

performed below chance on the continuous trials, which did not involve an opportunity 

for numerical interference. On the other hand, even those younger children who 

performed at or below chance on the comparison task were successful on the single 
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spinner trials (judging whether they thought it would land on blue or red). Thus, it may be 

that deciding the probability of a single outcome is an easier task than comparing two 

outcomes (when the total number of pieces differ). Given that correctly judging a single 

spinner requires assessing the relationship between only two amounts (red vs. blue), 

while comparing two spinners requires comparing the relations among four different 

amounts (red vs. blue in each spinner, then comparing across spinners), it may not be 

surprising that children performed better on the single spinner task. Thus, our findings 

suggest that 3-4-year-old children are able to use proportional information to make 

inferences about outcomes (i.e., that the probability of an outcome is determined by the 

proportional relationship between the pieces), but excessive cognitive demands (e.g., 

working memory, strategy selection, comparing multiple outcomes) of the comparison 

task set up may limit their ability to demonstrate proportional understanding.  

Interestingly, even those younger children who performed above chance on the 

comparison task did not produce data revealing a statistically significant numerical 

interference effect. Rather, these younger children generally performed worse on the 

discrete trials overall than the continuous trials, regardless of whether or not numerical 

information conflicted or aligned with proportional information. Given that the discrete 

trials involved non-consecutive red pieces, using a proportional strategy on these trials 

may have required more mental spatial manipulation than the continuous trials, 

potentially leading to their lower performance. Although we cannot claim that the 

younger group did not use whole number information, the findings that children 

performed worse overall on discrete trials than continuous trials, but not in a way 

consistent with whole number information, hints that maybe young children were less 
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likely to use numerical strategies. In other words, given the young age of these children, 

they may not have seen the discrete trials as being a numerical task at all. This may be 

because these children likely had lower numerical abilities (e.g., might still be in the 

process of learning to count) and/or because numerical information is simply less salient 

to them (consistent with Sophian et al., 1995). Since we did not measure the numerical 

abilities of the children in the current study, our data cannot speak to this explicitly. 

However, given that between the ages of 3- and 6-years of age children are gaining a 

substantial amount of formal whole number knowledge (e.g., Hurst, Anderson, & Cordes, 

2016; Le Corre & Carey, 2007; Wagner & Johnson, 2011) as well as proportional 

reasoning ability (e.g., Girotto et al., 2016; Sophian, Garyantes, & Chang, 1997), this 

may be a key period for investigating the developmental progression of these two 

concepts and how they may rely (or not) upon each other. 

In contrast to the younger group, 5-6 year-olds performed quite well on both the 

comparison task and the single spinner task. Replicating previous findings (e.g., Boyer et 

al., 2008; Jeong et al., 2007), when whole number information was made available (i.e., 

the comparisons were discrete with different denominators) these older children relied on 

this information—performing better when whole number information was helpful and 

performing worse when whole number information was misleading.  

This numerical interference effect, however, was diminished when children were 

first exposed to continuous trials prior to the discrete block. That is, children primed to 

use a proportional strategy (in the continuous block) were less likely to switch to a 

counting strategy, even when numerical information became available. It is notable that 

this transfer occurred despite quite an obvious stopping point between blocks that was 
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highlighted by the experimenter (e.g., “now the spinners look different”). This finding is 

consistent with studies investigating formal fraction instruction, which suggest that 

introducing discrete fraction content as an extension of more continuous instruction with 

decimals and percentages (e.g., Moss & Case, 1999), rather than the other way around, 

may promote rational number understanding. By introducing content in this order, 

children may be more likely to extend the continuous proportional strategies into these 

new discrete contexts and rely less upon discrete numerical information overall. The 

benefits of introducing proportional information in the context of continuous 

representations prior to discrete representations are one potential avenue for future 

research.  

Recently, Boyer and Levine (2015) reported a similar finding using a slightly 

different paradigm (a match-to-sample paradigm, where a child is asked to pick which of 

two options is the proportional match to a target, while ignoring the numerical match). 

Boyer and Levine reported that 4th graders who were given prior experience with 

continuous trials were less likely to use a numerical strategy on the subsequent discrete 

trials. Extending these findings, our data reveal this pattern as early as 5-6 years of age 

(corresponding to approximately kindergarten), suggesting that even at this young age, 

children’s strategies for engaging in proportional tasks may be fairly malleable. It should 

be noted, however, that although Boyer and Levine tested younger children, they did not 

find the prior-experience effect in 2nd graders or kindergartners. This contrast may be due 

to several minor differences across paradigms. For example, match-to-sample tasks (as 

those used in Boyer and Levine) may be more cognitively taxing than comparison tasks, 

as they require making comparisons across a greater number of stimuli (3 stimuli versus 2 
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stimuli). In fact, the kindergarteners and 2nd graders studied by Boyer and Levine were 

less accurate overall in their task than the 5-6-year-olds were in the current study (the 

average score for kindergarteners in Boyer and Levine was between 50%-65% correct, 

whereas the 5-6-year-olds in the current study had average scores between 62%-89% 

correct). Thus, it may be that 5-6 year old children are able to inhibit their reliance on 

numerical strategies, but only in contexts that are otherwise relatively easy for them.  

That is, when the task is challenging, children may be more likely to resort to relying on 

whole number information and less likely to use proportional strategies. However, it 

remains unclear why children would rely on numerical information in challenging 

contexts, given evidence that proportional reasoning may be a particularly early 

developing tool for encoding information (Duffy, Huttenlocher, & Levine, 2005; 

Huttenlocher, Duffy, & Levine, 2002). It may be that for children this age, numerical 

strategies are more salient or easier to match exactly than proportion (since counting and 

comparing the two salient sets is seemingly less taxing than comparing the relative size of 

four quantities).  In contrast, in relatively simple tasks, children’s reliance upon 

numerical information may be more malleable, allowing them to switch back to the more 

approximate proportional strategy when given the right experience.  

Although experience with continuous trials encouraged children to rely on a 

proportional, rather than whole number, strategy, we did not find an effect of our direct 

instructional training. Overall, children in the training group did out-perform their peers 

who did not receive training, suggesting that highlighting the relevant parts of the 

displays may have increased children’s attention to the task at a more global level. 

However, the training did not have a specific effect on strategy selection (i.e., did not 
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result in a reduction of numerical interference). It may be that our instructional training 

was simply not strong enough to help children overcome their tendency to focus on 

numerical information or that there may be a more effective way to highlight relevant 

information. For example, we aimed to highlight the parts (i.e., number of red and 

number of blue), but it may be that children would benefit more from highlighting 

attention to the total number of pieces (i.e., the denominator) in addition to the number of 

red pieces (i.e., the numerator).  

In addition to generally succeeding on the proportion tasks, there was a significant, 

positive relationship between older children’s judgments of how confident they were of a 

particular outcome (e.g., that the spinner would land on blue) and the actual probability 

of the outcome. That is, children reported being more confident in their response when 

the likelihood of the outcome was actually much higher than the likelihood of the other 

outcome. Thus, by 5-6-years-old, children already show relatively sophisticated 

probabilistic reasoning in both estimation-type (what color do you think it will land on) 

and comparison (which spinner is more likely to land on red) contexts in which they are 

unable to rely solely on numerical information. Younger children, on the other hand, did 

not show this same pattern with their confidence judgments. It may be that 3-4 year-olds 

simply had trouble understanding the question or response scale. Research looking at 

preschoolers’ abilities to provide confidence judgments in other domains suggest that this 

skill is still developing between 3- and 4-years-old (Hembacher & Ghetti, 2014; Ghetti, 

Hembacher, & Coughlin, 2013), so it may be that our younger participants were not able 

to articulate their uncertainty in this context. Alternatively, our data may reflect a limit to 

3-4-year-olds’ understanding of probability even in these single estimation contexts. 
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Additional studies should investigate how early understanding of probability in this 

preschool age range may depend on specific aspects of the task demands. In particular, 

given the varying cognitive skills (e.g., working memory) and specific knowledge (e.g., 

whole number knowledge, estimation skills) required across distinct tasks commonly 

used in the literature (e.g., single display estimation tasks, comparison tasks, match-to-

sample tasks), these tasks are likely not interchangeable. However, performance 

differences across these tasks may shed important insight into how children’s 

understanding of proportion and ability to reason about the relevant relational 

information develops. 

Lastly, the current study suggests that children’s more general ability to reason 

analogically using geometric patterns is significantly related to their proportional 

reasoning in continuous contexts, but not in discrete contexts. Given that children 

engaged in numerical strategies on discrete trials, this finding might suggest that 

relational reasoning is specifically related to proportional reasoning (used on continuous 

trials) more so than counting or numerical reasoning (presumably the dominant strategy 

used on discrete trials).  However, analogical reasoning (as measured here) was not 

significantly correlated with the extent to which children relied upon numerical 

information, in particular. Furthermore, as noted in the Method, given the not at random 

missing data for this analysis, these findings should be interpreted with caution. Rather, 

our goal is to suggest some directions for future work, to further investigate the 

potentially unique role of analogical reasoning in proportional thinking over other 

quantitative and mathematical knowledge. In particular, it is critically important to 

investigate the causal nature of this relationship (if any) and in particular whether 
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analogical training, aimed at facilitating children’s analogical reasoning through 

structural alignment, can foster recognition of the relational nature of proportion contexts 

(as has been shown in other domains, e.g., Gentner, Levine, Ping, Isaia, Dhillon, Bradley, 

& Honke, 2016).  

In sum, the current study provides substantial insight into the context effects and 

individual differences in children’s use of numerical and proportional information in 

discrete and continuous probabilistic contexts. Future research should continue 

investigating the relationship between numerical and proportional information in order to 

further elucidate the factors that may lead to or prevent numerical interference (e.g., the 

saliency of numerical information in the fraction symbol system, global attention to the 

relation versus local attention to features during specific task demands), how the 

relationship may be leveraged to benefit learning rather than lead to interference (e.g., 

teaching continuous proportional information before discrete proportional information), 

and how domain general analogical reasoning skills may be leveraged to help children 

attend to relational information.   
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Appendix: Additional Analyses 

Additional 8-year-old Sample 

An additional sample of 7-8 year old children also participated in this study.  This 

group performed near ceiling levels on the task, leading to substantial skew in the 

distribution of their responses, violating assumptions of normality and making it difficult 

to analyze children’s responses given the few number of questions per cell (4 trials per 

cell when broken down into discrete vs. continuous and misleading vs. consistent). On 

average, children performed at least 80% correct on all trial types: Consistent Trials 

MContinuous = 88% (SD=20%), MDiscrete = 93% (SD=15%); Misleading Trials MContinuous = 

93% (SD=18%), MDiscrete = 80% (SD=30%). The figure below displays a histogram of 

overall performance (total possible score of 16, across the 4 trial types). Notably, almost 

a third of the children (29/88) got all the questions correct and more than half (50/88) got 

at most one incorrect. Below, we provide an analysis of this group’s performance using 

analogue analyses as those used in the manuscript. It is worth noting that one child got all 

the problems incorrect (0/16). When this child is excluded from the analyses, the overall 

pattern of results reported below does not change.  
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Despite this extreme left skew, data from 7-8-year-olds also showed evidence of an 

interference effect. We conducted a 2 (Block Type) X 2 (Trial Type) repeated measures 

ANOVA, with Training (2) and Order (2) as between subject measures. There was a main 

effect of trial type, F(1,84) = 4.22, p = 0.04, partial η2 = 0.05, and a marginal effect of 

block type, F(1,84) = 3.9, p = 0.053, partial η2 = 0.045. However, these effects were 

qualified by a significant Block Type X Trial Type interaction, F(1,84) = 24.27, p < 

0.001, partial η2 = 0.22. In particular, as expected, children performed better in the 

discrete trials compared to the matched continuous trials when numerical information 

was consistent, t(87) = 2.65, p = 0.01, and worse in discrete trials compared to the 

matched continuous trials when numerical information was misleading, t(87) = 4.3, p < 

0.001. 

There was also a marginal Block Type X Training interaction, F(1,84) = 3.9, p = 

0.053, partial η2 = 0.045 and a significant Block Type X Order interaction, F(1,84) = 

12.7, p < 0.001, partial η2 = 0.13. In particular, those in the No Training condition 

performed similarly on the discrete and continuous blocks (MDiscrete = 89%; MContinuous = 

89%; t(43)=0.198, p=0.8) while those in the Training condition performed better on the 

continuous block (92%) than the discrete block (85%; t(43)=2.86, p=0.007). When 

looking at order effects, those who received the discrete block before the continuous 

performed better on the continuous block (94%) than the discrete block (84%; t(45)=3.72, 

p=0.001) and those who received the continuous block before the discrete, did not 

perform significantly different across the two blocks (MContinuous = 87%; MDiscrete = 90%; 

t(41)=1.1, p=0.28). However, these interactions did not further interact with trial type and 

there were no other significant main or interaction effects (ps>0.1). 
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These findings are consistent with other work suggesting that this age group shows 

a numerical interference effect when evaluating discrete proportional displays. In 

addition, the effects are overall consistent with, but less nuanced than, the pattern shown 

by the 5-6-year-olds in the current manuscript. That is, children who received the discrete 

trials before the continuous trials performed worse on the discrete trials relative to the 

continuous trials, whereas those children who received the continuous trials before the 

discrete trials did not perform differently across the two blocks of trials. This gives some 

hint that having the continuous trials before the discrete trials may impact these 

children’s strategy choice, and in particular lead to similar performance across the two 

blocks. However, these interactions did not significantly interact with trial type, 

suggesting that the pattern is less specified to particular trial types in this sample (as they 

were with the 5-6-year-olds), and may not be entirely explained by overcoming a 

numerical bias. Furthermore, the small (and marginal) Training x Block interaction 

suggests that our training led to a larger difference in performance between continuous 

and discrete blocks, relative to those in the no training condition. This further emphasizes 

that our training may not have been best suited to improving performance on the discrete 

trials specifically. It is possible that the less nuanced pattern of effects found for these 7-

8-year olds (relative to the 5-6-year-olds) is because of lower variability in responses at 

the upper end of performance. However, given the extreme skew in the distribution 

suggesting ceiling level performance, both overall and within each trial type, the 

interpretation of these effects is limited. The analyses are provided here only for 

transparency and completeness, as well as to provide some potential insight into the 

performance of this oldest age group.  
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Alternate Scoring of Pattern Analogy 

Many of the children, particularly the younger children, performed fairly poorly on 

the analogy task (for example, over a third of the children received less than 35% correct) 

based on using the dichotomous correct/incorrect scoring. However, this measure of 

accuracy treated all errors as equal, despite the fact that some of the “wrong” options 

were more related to the pattern than other options. Thus, in order to differentiate 

children who had some knowledge of how to make an analogy from those who did not, 

we also scored the analogy task using a slightly different method. In this error-based 

scoring scheme, the scores were not based on perceptual similarity to the correct answer, 

but rather whether the perceptual match was one that took into account the first half of 

the analogy (suggesting some understanding of needing to make a “match” across these 

relations) versus a perceptual match that ignored the first half of the analogy, which is 

likely a less difficult match (given the perceptual and temporal proximity). However, 

these distinctions were not tied to specific perceptual features (e.g., color vs. shape 

matches), but instead based on the location of the perceptual match in the analogy. 

In our alternate scoring method, each trial of the Pattern Analogy task was scored 

with 0 to 3 possible points, so that children were given partial credit for making 

perceptual matches, even if they did not make the relational match. Selecting the correct 

analogical match was worth 3 points, reflecting a complete understanding of the 

analogical relation (e.g., the red circle in Figure 1D of the main text). Children who 

selected the same image as “B” (in A:B::C:?), were considered to have made the far-

perceptual match (2 points; the yellow circle in Figure 1D). Meaning, they understood 

that they were required to reference the first half of the pattern (A:B), but selected the 
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perceptual match rather than the relational match. Children who selected the same image 

as “C” were considered to have made a close-perceptual match (1 point; the red diamond 

in Figure 1D of the main text). Meaning, they understood the need to make a pattern, but 

selected the simple perceptual match on the second half of the analogy only (C:?) without 

referencing the first half, neither perceptually or relationally. The other two options were 

no directly related to the pattern, either perceptually or relationally (blue circle or red 

square in Figure 1D of the main text), and so selection of these options indicated no 

understanding of completing any clear pattern (0 points). Thus, the total possible score on 

the Pattern Analogy task ranged from 0 to 18 (across all six trials) and is reported as a 

proportion out of 18. This scoring method incorporated error-type in order to illuminate 

meaningful differences among low-scoring children. Thus, this scoring system creates a 

continuum from little to no understanding of patterning, to understanding basic aspects of 

patterning, to understanding relational and analogical patterning in particular. 

Table: Descriptive Statistics for the alternate scoring of Pattern Analogy  

 

 

 

Using this scoring scheme, pattern analogy score was significantly correlated with 

performance on the continuous trials (r = 0.245, p = 0.004), but not on discrete proportion 

trials (r = 0.04, p = 0.618), mirroring findings reported in the main text using the 

dichotomous scoring scheme. Furthermore, pattern analogy performance was 

significantly correlated with interference scores (r = -0.17, p = 0.045), suggesting that 

 Pattern Analogy: 

Mean proportion correct (SD) 

Younger Children (N=62) 0.48 (0.02) 

Older Children (N=80)  0.74 (0.02) 
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children who were more likely to use number during the discrete trials were also likely to 

have lower analogical reasoning scores.  

 Given that this relation is small, and not reproduced using an alternate scoring 

scheme, it should be interpreted with caution. However, it may point to the idea that 

children with lower analogical reasoning skills may be more likely to rely on numerical 

information and not proportional information.  

 

 


