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Abstract 

Recent research suggests that fraction understanding is predictive of algebra ability, 

however the relative contributions of various aspects of rational number knowledge are unclear. 

Furthermore, whether this relationship is notation-dependent or rather relies upon a general 

understanding of rational numbers (independent of notation) is an open question. In the current 

study, college students completed a rational number magnitude task, procedural arithmetic tasks 

in fraction and decimal notation, and an algebra assessment. Using these tasks, we measured 

three different aspects of rational number ability in both fraction and decimal notation: (1) acuity 

of underlying magnitude representations, (2) fluency with which symbols are mapped to the 

underlying magnitudes, and (3) fluency with arithmetic procedures. Analyses reveal that when 

looking at the measures of magnitude understanding, the relationship between adults’ rational 

number magnitude performance and algebra ability is dependent upon notation. However, once 

performance on arithmetic measures is included in the relationship, individual measures of 

magnitude understanding are no longer unique predictors of algebra performance. Furthermore, 

when including all measures simultaneously, results revealed that arithmetic fluency in both 

fraction and decimal notation each uniquely predicted algebra ability. Findings are the first to 

demonstrate a relationship between rational number understanding and algebra ability in adults 

while providing a clearer picture of the nature of this relationship.  

Keywords: Decimals; Fractions; Numerical Magnitude Knowledge; Procedural Knowledge; 

Algebra   
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A Systematic Investigation of the Link Between  

Rational Number Processing and Algebra Ability 

 Understanding rational numbers is a critical building block for advanced scientific and 

mathematical thinking. Even when controlling for other math abilities, fraction and decimal 

knowledge is a unique predictor of arithmetic proficiency and more general math achievement 

(Bailey, Hoard, Nugent, & Geary, 2012; Schneider, Grabner, & Paetch, 2009; Siegler, 

Thomspon, & Schneider, 2011; Siegler & Pyke, 2013).  Furthermore, rational number 

understanding has been linked specifically to algebra readiness (Booth & Newton, 2012) and 

algebra ability in high school (DeWolf, Bassok, & Holyoak, 2015; Siegler et al., 2012). 

However, the nature of this relationship is not fully understood. Clearly, algebra ability relies 

upon a number of important skills – an ability to manipulate symbols, a firm understanding of 

the number system, and a strong conceptual understanding of how arithmetic works (e.g., 

Carraher, Schliemann, & Brizuela, 2000; Fuchs et al., 2008; Linchevski, 1995) – all skills that 

are strengthened through working with rational numbers. However, whether the relationship 

between rational number understanding and algebra ability rests primarily upon a better 

conceptual understanding of the procedures involved in higher-order mathematics or instead 

upon a deeper understanding of the continuous nature of our numerical magnitude system is a 

relatively open question. In line with suggestions from the National Mathematics Advisory Panel 

(2008) and the Common Core State Standards (National Governors Association Center for Best 

Practices, 2010) which outline the importance of understanding the relationship between rational 

number magnitude understanding, arithmetic ability, and algebra ability, in the current study we 

investigate the relative importance of rational number magnitude processing (both precision in 

the underlying representation and fluency in understanding how symbols are mapped to 
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numerical magnitudes) and of rational number procedural competence in predicting algebra 

ability in young college students.  

Rational Number Magnitude Understanding 

One possibility is that algebraic achievement may rely upon a precise understanding of 

the continuous numerical magnitudes that fall between integer values (i.e., rational number 

magnitudes) and/or fluency with mapping between symbolic notation (decimal and/or fraction 

notation) and the analog mental magnitudes they represent. These abilities, which are generally 

assessed using number comparison tasks in which participants are asked to rapidly judge which 

of two numerical symbols is larger and/or with number-line tasks in which participants are asked 

to place a number along a line with two numerical endpoints, have been shown to be strongly 

predictive of mathematical achievement (e.g., Bugden & Ansari, 2011; Holloway & Ansari, 

2009).  For example, 1st and 2nd grade children’s symbolic whole-number comparison 

performance has been shown to predict their more general math achievement (Bugden & Ansari, 

2011). However, the link between performance on magnitude tasks and math achievement is not 

constrained to whole-number magnitudes; more recently, rational number magnitude judgments 

have also been shown to predict general math ability.  For example, when participants are asked 

to indicate where a fraction or decimal falls on a number line (with endpoints of 0 and 1) and/or 

to rapidly compare the relative magnitude of two fractions or decimals, performance on these 

magnitude tasks is often related to more general math achievement (Booth & Siegler, 2008; 

Fazio, Bailey, Thompson, & Siegler, 2014; Schneider, Grabner, & Paetch, 2009; Siegler, 

Thomspon, & Schneider, 2011; Siegler & Pyke, 2013) as well as algebra readiness (Booth & 

Newton, 2012; Booth, Newton, & Twiss-Garrity, 2014).    

But what exactly is it about performance on these tasks that tap into later mathematical 
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understanding? Importantly, both number line and comparison tasks arguably assess two distinct 

aspects of magnitude processing:  (1) the precision in the underlying representation of rational 

numbers (i.e., numerical acuity) and (2) the automaticity or fluency of the mapping between 

numeric symbols (i.e., fractions, decimals) and the numerical magnitudes that they represent.  

Previous research has linked both of these aspects of magnitude processing to general math 

ability for whole numbers (Castronovo & Gobel, 2012; De Smedt, Verschaffel, & Ghesquiere, 

2008; Geary, 2011; Mundy & Gilmore, 2009).  In the current study, we explore the potential 

contribution of each of these aspects of rational number magnitude processing to algebra 

achievement, in particular.   

Magnitude Acuity: Number magnitude acuity, or the precision in the underlying 

representation of number magnitude, has repeatedly been found to correlate with formal math 

measures. The acuity of underlying magnitude representations is typically measured via number 

comparison tasks in which individuals are asked to rapidly judge which of two numbers is 

largest. Numerical comparisons of whole numbers and non-whole numbers obey Weber’s law, 

such that the discriminability of two values is dependent upon their ratio (e.g., Hurst & Cordes, 

2016; Moyer & Landauer, 1967, 1973); that is, the closer two values are, the longer it takes to 

identify the larger value. This ratio-dependence of numerical discriminations gives rise to “ratio 

effects” in the behavioral data, assessed as the slope (i.e., β estimate) of the line relating response 

time to the ratio of the two values being compared1. Prominent models of numerical 

representation posit that individual ratio effects serve as a proxy for the precision in the 

 
1 The ratio of values was computed as the larger value / smaller value, with higher ratios 

involving greater relative differences between the values presented (resulting in faster 
comparisons). When measured in this way, ratio effects (i.e., slopes) are negative values, 

however throughout the current manuscript we will refer to “strong” ratio effects as being those 

values that are highly negative (i.e., far away from zero in the expected direction). 
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underlying representation of numerical magnitudes, with strong ratio effects reflecting less 

precision in the underlying representation (e.g., Holloway & Ansari, 2009; Moyer & Landauer, 

1967, 1973).  

In line with the hypothesis that representational precision is important for math 

achievement, many studies have shown that strong individual whole number ratio effects 

negatively correlate with math achievement (e.g., Castronovo & Gobel, 2012; De Smedt, 

Verschaffel, & Ghesquiere, 2008; Geary, 2011; Halberda, Mazzocco, & Feigenson, 2008; 

Holloway & Ansari, 2009; Mundy & Gilmore, 2009) and positively correlate with math anxiety 

(Maloney, Ansari & Fugelsang, 2011). Furthermore, having a precise representation of 

numerical magnitudes is posited to be important for accurately approximating answers to basic 

arithmetic (e.g., Dehaene, Spelke, Pinel, Stanescu, & Tsivkin, 1999; Gilmore, McCarthy, & 

Spelke, 2007). However, whether individual ratio effects obtained from rational number 

magnitude tasks are similarly predictive of algebra performance is an open question.  

Recent work also suggests that, beyond the point estimate of an individual’s ratio effect 

(i.e., slope, β), variability in the measurement of each individual’s ratio effect (i.e., the standard 

error (SE) of each individual’s slope estimate) may also be important for predicting math ability 

(Lyons, Nuerk, & Ansari, 2015). This measure, a distinct but related measure of precision in the 

individual’s underlying representation of number, has been shown to be a more consistent 

predictor of arithmetic ability in children than the point estimate of their ratio effect in the case 

of whole numbers. Thus, given that both ratio effects and the variability in ratio effect 

measurements of whole numbers have been shown to predict general math achievement, and 

other work has shown a link between rational number understanding and algebra ability, it may 

be that a precise representation of rational number magnitudes is similarly important for algebra 
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performance, reflecting a better understanding of the continuum of rational numbers and thus a 

better sense of the range of values that unknown variables may represent.  

Furthermore, adults’ understanding of rational number magnitudes may not be equivalent 

across distinct notations. In particular, evidence suggests that it is substantially easier to access 

magnitude information from decimals than from fractions (DeWolf, Grounds, Bassock, & 

Holyoak, 2014; Hurst & Cordes, 2016), and thus magnitude understanding in these two notations 

may not be equally predictive of algebra ability. For example, although fraction notation may be 

a more complicated symbol (given its componential nature that is very different from the typical 

place-value system), understanding magnitude information using decimals may provide adults 

with a more direct understanding of rational number magnitudes.  In the current study, we 

explore this possibility by determining whether rational number magnitude acuity (as assessed 

via ratio effects (slope, β) and variability in ratio effects (standard error, SE) in numerical 

comparison task data) in decimal notation and in fraction notation, together or separately, 

predicts algebra ability.      

Symbolic Magnitude Fluency: Regardless of the level of precision in the underlying 

magnitude representation, in order to work with rational number notation, a fluent mapping 

between the symbolic numerals (i.e., fractions, decimals) and the underlying numerical 

magnitudes that they represent must be acquired.  That is, working with rational numbers 

requires a sense of what numerical magnitude is denoted by, for example “5/8”.  As such, 

symbolic magnitude fluency has been assessed as how well an individual is able to map between 

a symbol and the symbol’s representation (for example, as the average speed in a numerical 

comparison task).  Importantly, whole number symbolic mapping has been found to predict math 

achievement (Castronovo & Gobel, 2012) even when controlling for other aspects of magnitude 
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understanding (Mundy & Gilmore, 2009). It is quite possible a similar relationship may hold 

between rational number symbolic magnitude fluency and algebraic ability, particularly due to 

the complex notation used for rational numbers (involving both Arabic numerals as well as non-

numerical symbols (i.e., the period in decimals and the vinculum or dividing line in fractions)). 

Thus, an automatic mapping from the complex fraction and decimal notation to the underlying 

representation of magnitude requires a flexible use of symbols and symbol formation, a skill also 

required for symbolic manipulation in algebra (Swafford & Langrall, 2000). As such, rational 

number symbolic magnitude fluency may be an important predictor of algebraic skill, as they 

both reflect an ability to think about the meanings behind abstract symbols. In the current study, 

we explore this relationship.   

Rational Number Arithmetic Procedural Fluency 

In addition to magnitude understanding of rational numbers, it may be that the ability to 

execute procedures with fractions and decimals is predictive of algebra ability. Some evidence 

does suggest that performance on fraction arithmetic assessments is related to general math 

ability (Bailey, Hoard, Nugent, & Geary, 2012), but it is unclear whether this relationship holds 

when predicting more advanced mathematical thinking, such as algebra.  However, there is 

reason to think that performance on rational number arithmetic assessments may be particularly 

important for algebra. Algebra requires an ability to quickly and flexibly manipulate symbols in 

order to manipulate equations and perform calculations. As such, algebra scores have been found 

to correlate with non-numerical symbolic abilities, including those necessary for understanding 

the syntax of language (MacGregor & Price, 1999), suggesting an ability to follow abstract rules 

and/or manipulate even non-numerical symbols is an important contributor to algebra ability. 

Furthermore, beyond pure symbol manipulation, successfully performing arithmetic with 
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fractions and decimals requires substantial conceptual understanding of the way arithmetic 

works, a skill that is also important for solving complex algebra. Thus, in the current study we 

also explore the contribution of procedural understanding, for decimal arithmetic and fraction 

arithmetic, in predicting algebraic performance.  

Educational Experience 

Notably, previous reports of a link between rational number understanding and algebra 

achievement (DeWolf, Bassok, & Holyoak, 2015; Siegler et al., 2012) have been limited to 

exclusively exploring this relationship in children, who are still in the process of acquiring these 

mathematical concepts.  Given that mathematical learning is a slow, extended process throughout 

adolescence, it is important to determine whether, once rational number and basic algebra course 

instruction is complete by the time students reach college, the relationship between rational 

number understanding and algebra still holds. On the one hand, by adulthood, individuals may 

have developed strategies that help them to circumvent the limitations brought on by poor 

fraction understanding, such as, for example, relying more heavily upon decimal notation when 

performing advanced mathematics. If so, these alternative strategies may mute the strength of the 

relationship between fraction understanding and fluency with basic algebra. On the other hand, 

given that difficulties in rational number processing (in both fraction and decimal notation) 

persist into college-aged students (e.g. DeWolf et al., 2014; Ni & Zhou, 2005), there is reason to 

believe that the relationship between fraction knowledge and algebra abilities established in 

childhood may be indicative of an overall competence with advanced mathematical concepts and 

as such, the relationship should hold into adulthood with basic algebra fluency. Thus, 

investigating the mechanisms involved in the relationship between rational number 

understanding and algebra in a group of young college-educated adults may provide important 
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insights into the strategies and performance patterns shown in experienced learners, who have 

completed formal schooling in these topics. 

The Current Study 

In the current study we aimed to further specify the relationship between rational number 

understanding and basic algebra achievement using three specific measures of rational number 

understanding in a group of educated adults. Using a magnitude comparison task we assessed (1) 

the fluency of the mapping between fraction and decimal symbolic notation and the magnitudes 

they represent (symbolic magnitude fluency) and (2) the precision of the underlying magnitude 

representation (numerical acuity, both via ratio effect slopes (β) and variability in the ratio effect 

estimates (SE)). In addition, adults completed measures of fraction and decimal arithmetic to 

assess rational number arithmetic fluency in these distinct notations.  Since previous work has 

rarely investigated both decimal and fraction notation within the same study, we included 

measures of both notations in order to determine the relative contributions of rational number 

knowledge in each symbolic notation. This research addresses four open questions: (1) Does the 

relationship between rational number ability and algebra hold in young college-educated adults 

even after learning the required math content? (2) Does the relationship between magnitude 

understanding and algebra fluency depend on the type of magnitude understanding (symbolic 

magnitude fluency versus precision) and/or the notation of the symbolic magnitude 

representation (fractions versus decimals)? (3) Does the relationship between rational number 

arithmetic and algebra depend on the notation used? And (4) when both magnitude and 

arithmetic measures are included in the relationship to predict algebra fluency, what is the 

relative contribution of each measure?  

Method 
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Participants 

Fifty-one college students (M=19.4 years, Range: 17 to 24 years, 37 females) participated 

for $10 or course credit and were included in all analyses. Data from an additional twelve 

participants were excluded for experimenter or computer error (3), for not meeting the required 

criteria on the number comparison task (6), or for not meeting the required criteria on the 

assessments (3). See “Data Analysis” for details of exclusion criteria. 

Stimuli and Apparatus 

Algebra Assessment 

 Twelve basic algebra questions were adapted from the released questions for the Trends 

in International Mathematics and Science Study, Grade 8 level assessment (TIMSS, 2003, 2011; 

see Appendix A for a complete list of questions) by removing the multiple-choice options, 

making them open-ended response questions. Questions included simplifying or solving 

expressions (e.g., simplify: 4x-x+7y-2y; solve 2a+3(2-b) given a=3, b=-1) and understanding 

relations (e.g., given a table of x and y values, write the equation relating y to x). The entire 

assessment had a Cronbach’s Alpha of 0.77 (based on time to complete each question). 

Questions were presented in a random order. Importantly, none of the algebra questions included 

any non-integer rational number knowledge (i.e., did not involve fractions or decimals).  

Number Comparison Task 

The number comparison task was presented on a SensoMotoric Instruments (SMI; 

Boston, MA) mobile Eye Tracker, with a 1400.08cm2 (22-inch) screen (1024 x 768 px).  The 

task involved three distinct blocks of trials, in which participants were required to compare the 

relative magnitude of two fractions (FvF block), two decimals (DvD block), or two whole 

numbers (NvN block). In order to measure an individual’s precision with which they represent 
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rational number magnitudes we manipulated the ratio between the two to-be-compared numbers, 

allowing us to measure ratio effects (e.g., DeWolf, Grounds, Bassock, & Holyoak, 2014; Moyer 

& Landauer, 1967; Schneider & Siegler, 2010), which are reported elsewhere (XXX, 2016). 

Thus, each block of notation-specific comparisons included four unique comparisons from each 

of four approximate ratio bins: 1.125 bin (range 1.11 to 1.17), 1.25 bin (range 1.24 to 1.27), 1.5 

bin (range 1.35 to 1.67), and 2.5 bin (range 2.2 to 2.92). Each unique comparison was shown 

twice (once with the largest value on the right and once with the largest value on the left), 

resulting in 32 trials in each of the FvF, DvD, and NvN blocks (4 ratios x 4 unique comparisons 

x 2 (shown twice)), making a total of 96 trials (32 x 3 blocks) across all three blocks of trials.  

All numerical stimuli were created in Arial regular font size 72pt (approximately 2cm 

high).  The fixation cross was in 32pt font (1cm2). The fraction stimuli were designed in order to 

prevent the use of overt whole number strategies on the fraction components (i.e., comparing 

only numerators or only denominators; Schneider & Siegler, 2010). In particular, no fraction pair 

contained the same natural number in more than one component, meaning each fraction 

comparison contained four distinct natural numbers ranging from 1 to 15 (e.g., 3/4 versus 4/7 

would not occur). Furthermore, fraction pairs were congruent with the numerators (i.e., the larger 

fraction was consistent with the larger numerator) on 14 of the 32 trials and incongruent on the 

other 18 trials, making exclusively numerator-based comparison strategies unreliable. For the 

decimal stimuli, all numbers contained a whole number before the decimal point and two digits 

after the decimal point (e.g., 0.20; 1.56) in order to prevent responding based on decimal length. 

Notably however, because decimal length was not manipulated, this may have allowed for the 

use of other, non-magnitude based strategies, such as whole number based processing (i.e., 
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treating a decimal value as a whole number, such as treating the comparison 0.51 vs. 0.38 as 51 

vs. 38). Decimal values ranged from 0.20 to 22.50 and fraction values ranged from 1/5 to 15/2. 

Fraction and Decimal Arithmetic 

 The assessments were presented in two separate blocks, with each arithmetic assessment 

containing 8 items (two items each of addition, subtraction, multiplication, and division). On the 

decimal assessment, one problem of each arithmetic type (4 total) involved two decimals to the 

hundredths digits (e.g., 1.27 + 0.89) and the other problem involved one decimal to the 

hundredths digit and the other to either the tenth or thousandths digit (e.g., 0.5 + 0.13; 1.74-

1.321; 4 problems total of mixed length).  On the fraction assessment, none of the problems 

contained fractions with the same denominator. Answers to all problems resulted in positive 

values. Questions were presented in a random order.  

Procedure 

Participants were seated alone in a quiet room. The experimenter entered the room to 

explain the instructions and answer questions at the beginning of each task and then left during 

the tasks. Participants completed the tasks in the following order: (1) Algebra assessment, (2) 

Number Comparison task, and (3) Fraction and Decimal assessments (order counterbalanced).  

For all tasks, participants were encouraged to perform as quickly and accurately as possible.   

For the three math assessments, participants were seated in front of a Macintosh laptop 

computer and given a pen and a blank workbook. Questions were presented one at a time on the 

computer screen, but participants were provided with a workbook and pen to work out the 

solution and provide the answer. In order to advance to the next question, the participant clicked 

a button on the computer screen. Participants were told they had as much time as they needed, 

but that they were being timed and to work as quickly as they could.     
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The comparison task was performed on a different computer that also recorded eye-

movements and began with an eye-tracking calibration procedure (eye-tracking data presented 

elsewhere; XXX, 2016). Participants were presented with a set of three blocks of notation-

specific trials in which they compared two Fractions (FvF; e.g., 1/2 vs. 3/4), two Decimals (DvD; 

e.g., 0.50 vs. 0.75), or two Whole Numbers (NvN; e.g., 5 vs. 2) and were asked to select which 

of the two numbers was larger as quickly and accurately as possible. No feedback was provided.  

Participants were also presented another set of three blocks of 32 trials each involving across-

notation comparisons (i.e., Decimal vs. Fraction; Decimal vs. Whole Number; Whole Number 

vs. Fraction). Data from those additional blocks are discussed elsewhere (XXX, 2016).  These 

additional blocks were either performed before or after the set of within-notation blocks (order 

counterbalanced across participants)2.  

Using their right hand, participants selected one of the two neighboring keys on the 

keyboard to respond to which number was larger. Participants advanced to the next trial by using 

their left hand to push the F4 key on the keyboard. Participants were instructed to keep both 

hands on the keyboard throughout the session. Numbers remained on the screen until the 

participant advanced to the next trial. Between each trial, a fixation-cross appeared in the middle 

of the screen to direct attention back to the middle.  Participants performed two non-numerical 

practice trials in which they rapidly selected the side containing an image of a circle. In addition, 

each block of test trials began with two condition specific practice trials, with feedback from the 

computer.   

Data Analyses 

 
2 There was no difference in performance on the FvF, DvD, or NvN blocks when they were 

presented in the first half versus in the second half of the six blocks (p’s>0.4), suggesting that 

these additional blocks did not impact performance. 



Algebra and Rational Numbers   

 

15 

Algebra and Procedural Assessments: Accuracy on all assessments was fairly high with 

relatively low variability (Fraction Arithmetic (score out of 8) M=7.04, SD=1.3; Decimal 

Arithmetic (score out of 8) M=6.08, SD=1.3; Algebra (score out of 12) M=10.44, SD=1.39). In 

particular, over 50% of participants obtained a perfect score on the Fraction Arithmetic. Thus, 

for each of the assessments the total time spent on the assessment (Completion Time; CT) was 

used as a measure of fluency and the dependent variable. In order for this measure of fluency to 

be a valid proxy for ability, participants who provided incorrect responses on more than half of 

the problems in each assessment were excluded from the analysis (resulting in three excluded 

participants)3.   

Number Comparison Task Measures: We obtained three different measures from the 

magnitude comparison task: two measures of magnitude acuity (ratio effect point estimate, 

(slope, or β), and variability of this estimate (SE) as in Lyons et al., 2015) and one measure of 

symbolic magnitude fluency (an adjusted average reaction time). For all calculations, only 

reaction times (RT) from correct responses and those within 3 standard deviations of the 

individual’s mean for that block were included.    

To measure magnitude acuity, a regression analysis was performed for each individual 

participant, treating each trial as an observation. RT was regressed onto ratio bin for each 

notation separately (decimal (DvD trials) and fraction (FvF trials)) to get a point estimate of the 

individual’s ratio effect (β) for each notation as well as a measure of variability of this point 

estimate (SE: the standard error of β). In order to be included in the slope measures, individuals 

needed to have at least 2 useable RT measures and to have scored above chance for at least 3 of 

the 4 ratio bins. In other words, if data were excluded for more than one ratio bin, that 

 
3 Moreover, when accuracy and completion time are combined to form an IES score (Townsend 

& Ashby, 1983) the pattern of results obtained is very similar. 
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participant’s ratio effect and SE of ratio effect was not calculated. This resulted in the exclusion 

of data from 5 individuals. One additional participant was excluded for having excessively long 

RTs on the majority of trials (>50% of responses on Fraction trials were longer than 10 seconds). 

Symbolic magnitude fluency was measured as the speed with which individuals 

processed rational number values. In order to isolate the variation in performance specific to 

fraction and decimal symbols (and not from magnitude fluency more generally), we controlled 

for general magnitude processing by subtracting each individual’s speed of processing (average 

RT) on the whole number comparison task from their speed of processing (average RTs) on the 

decimal and fraction comparison tasks. To compute this measure, average RT in responding 

(across the four ratio bins) for FvF, DvD, and NvN trials were calculated separately. Then, in 

order to isolate rational number magnitude processing over and above basic processing speed, we 

calculated an adjusted RT (RTadj) measure for DvD and FvF trials by subtracting the individual’s 

average RT on NvN trials (a proxy for basic magnitude comparison and processing speed) from 

the DvD and FvF trials (FvF RTadj = (FvF RT) – (NvN RT); DvD RTadj = (DvD RT) – (NvN 

RT)).  Thus any variability in the resulting RTadj measures can be accounted for by difficulty in 

processing numerical magnitudes presented in decimal or fraction notation, and does not 

represent differences in fine motor control and/or basic processing speed.   

Outliers: At the group level, any values that were identified as being more than 3 

standard deviations away from the group mean were replaced with the next value that was within 

the 3 standard deviation criterion. This occurred for five data points (two Decimal Procedural 

CTs and one data point in each of the decimal magnitude measures (β, SE, RTadj). 

Results 
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Both FvF and DvD comparisons resulted in significant ratio effects (significantly 

negative slopes; details reported in XXX, 2016) suggesting that on average, adults accessed the 

approximate magnitudes represented by the symbols during the magnitude comparison task and 

as anticipated, performance was more difficult for narrower ratios.  

First, we looked at the pattern of bivariate correlations (presented in Table 1, along with 

descriptive statistics) for each of the three magnitude measures (β, SE, and RTadj) for Fractions 

and Decimals separately. For Fractions, all three measures were significantly correlated. In 

particular, people with stronger ratio effects had higher variability in their ratio effects (SE) and 

lower symbolic magnitude fluency (i.e., longer RTadj). Thus, stronger ratio effects for Fractions 

seem to correspond with slower and less consistent responding, consistent with the notion that 

stronger ratio effects are indicative of poorer understanding.  

Decimals, on the other hand, showed a different pattern. Consistent with fractions, lower 

symbolic magnitude fluency (i.e., longer RTadj) was associated with more variability in 

responding (higher SE). However, ratio effects (β) for decimals were not significantly correlated 

with any other magnitude measures (symbolic magnitude fluency (RTadj) or variability (SE)).  

Correlations with Algebra fluency revealed that all rational number measures except FvF 

β were significantly correlated with Algebra fluency. In particular, adults with lower arithmetic 

fluency (i.e., took longer to complete both arithmetic assessments), lower symbolic magnitude 

fluency (higher response times on both comparison tasks; RTadj), higher variability in their ratio 

effects (higher SE) for both decimal and fraction notation, and lower decimal (but not fraction) 

ratio effects (i.e., slope (β) closer to zero) took longer to complete the Algebra assessment. 

Fraction ratio effects were not significantly related to Algebra fluency.  
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Notably, the measures of variability in ratio effects (SE) for both fraction and decimal 

notation were highly correlated with symbolic magnitude fluency (RTadj; Fractions: r=0.9; 

Decimals: r=0.6), consistent with previous research (Lyons et al., 2015). Because these high 

correlations (particularly for fractions) would have led to issues with multicolinearity in the 

regression and because previous research has shown that average RT is a better predictor of math 

performance than SE (Lyons et al., 2015), we included RTadj, but not the SE measures, in the 

combined regression analyses.  

Thus, in order to investigate the relative contribution of various measures of fraction 

understanding to algebra ability, we used a regression analysis using the magnitude measures 

(Model 1) and the arithmetic measures (Model 2) as predictors of Algebra fluency. Table 2 

provides all of the statistics for both individual models as well as the combined model.  

First, to test the additional contribution of the two arithmetic measures over and above 

the magnitude measures, we entered the magnitude measures (DvD RTadj, FvF RTadj, DvD β, 

FvF β) in the first step and entered the arithmetic measures (Decimal and Fraction arithmetic 

fluency) in the second step. Results indicated that the model including only magnitude measures 

was statistically significant, with both decimal measures (DvD β and DvD RTadj) providing 

unique statistical significance (p<0.05; and marginally FvF RTadj, p=0.066). Importantly, 

however, the addition of the arithmetic measures was also significant, ΔR2=0.307, F(2,44)=16.8, 

p<0.001.  

Second, to investigate the additional contribution of the set of magnitude measures, over 

and above the arithmetic measures, we conducted a second regression in which we entered the 

arithmetic predictors in the first step and added the set of magnitude measures in the second step. 

Not surprisingly, the model with only the arithmetic measures was significant, with both decimal 
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and fraction arithmetic each explaining statistically significant unique variance (p’s<0.001). The 

addition of the set of magnitude measures resulted in statistically significant change in the 

amount of variance explained by the model overall, ΔR2=0.103, F(4,44)=2.8, p=0.037. 

Finally, beyond the overall impact of the set of magnitude measures and the set of 

arithmetic measures, we investigated the impact of each individual measure on algebra 

performance by looking at the unique contribution of each measure in the overall, combined 

model. None of the individual magnitude measures explained significant unique variance, when 

controlling for all the others, although both Decimal measures showed small, marginally 

significant effects (p<0.1). On the other hand, both fraction and decimal arithmetic fluency 

explained significant unique variance (p’s<0.05) above and beyond the magnitude measures as 

well as each other.  

Discussion 

 The relationship between rational number understanding and algebra ability is complex. 

Our aim was to further characterize this relationship by exploring the relative contribution of 

various aspects of rational number understanding. In doing so, our results demonstrate novel 

predictors of algebra ability that are dependent upon the format of the symbolic notation used to 

measure them.  

First, our results reveal that the relationship between rational number arithmetic and 

algebra previously reported in children (e.g., Siegler et al., 2012) also holds in educated adults 

(college students) who have completed their schooling in rational number and basic algebra 

concepts. Rational number understanding thus remains an important predictor of algebra ability 

long after these skills have been acquired, suggesting that this relationship is not dependent upon 

recent instruction of these concepts. 
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More importantly, our findings further clarify the relationship between rational number 

understanding and algebra performance by suggesting that the relationship does depend on the 

type of knowledge being measured and the notation being used. When looking at magnitude 

predictors, we found that overall rational number magnitude understanding (as assessed by RTadj 

and β for both decimals and fractions) significantly predicted algebra fluency – however, only 

decimal (not fraction) magnitude acuity and symbolic magnitude fluency were uniquely 

predictive. In particular, higher algebra fluency was associated with a higher fluency with 

symbolic decimal magnitudes and with stronger decimal ratio effects. That is, adults who were 

quicker at the algebra assessment were faster at processing decimal notation and were more 

impacted by the ratio of the magnitudes involved in the comparison task.  The direction of this 

relationship with ratio effects is in contrast to typical results with whole numbers, such that 

weaker whole number ratio effects (typically attributed to more precise representations) are 

associated with better math ability (Holloway & Ansari, 2009) and lower math anxiety 

(Maloney, Ansari & Fugelsang, 2011). Although this finding may be counterintuitive, it opens 

up the possibility that the interpretation of ratio effects for whole number magnitudes may not be 

equally applicable for rational number comparisons. In particular, the existence of ratio effects 

for decimals comparisons has only recently been explored, with several studies showing that 

other, non-magnitude based strategies may interfere with magnitude dependent responding 

(Bonato et al., 2007; Desmet, Gregoire, & Mussolin, 2010; Kallai & Tzelgov, 2014; Varma & 

Karl, 2013). For example, whereas the goal of a magnitude comparison task is for participants to 

compare the numerical magnitudes associated with the given numbers, when presented with two 

decimals, it is possible for participants to engage in strategies such as comparing the length of 

decimal values or comparing the values of individual digits (i.e., comparing tenths, then 
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hundredths, etc.), which may obscure any possible ratio effects in magnitude judgments.  In our 

sample, we found approximately 30% of participants had a weak or non-existent decimal ratio 

effect (i.e., a positive or near-zero β value).  It is possible that these participants engaged 

alternative strategies that did not rely exclusively upon numerical magnitude. On the other hand, 

those individuals with stronger ratio effects may have consistently used magnitude-based 

strategies.  If so, then in contrast to ratio effects observed in whole-number comparisons, which 

are thought to be a measure of precision of the underlying representation, decimal ratio-effects 

may instead indicate whether or not the individual used magnitude-based processing.  As such, it 

may be that fraction and decimal ratio effects follow a u-shaped curve with positive or near-zero 

ratio effects indicative of non-magnitude based responding (associated with poor math 

performance) and highly negative ratio effects indicative of imprecision in the representation of 

rational number magnitudes (again, associated with poor performance), with some “ideal” level 

of ratio dependent responding falling in-between.  This theory may be most appropriately 

explored through future developmental investigations. Most importantly, this pattern of findings 

further highlights the need for investigating the representation of magnitudes presented across 

distinct notations simultaneously in order to shed light on how symbolic notation may convey 

magnitude information in different ways.  

In the current study, we used a numerical magnitude comparison task in order to provide 

a measure of rational number magnitude precision and fluency. Although comparison tasks are 

widely used in the literature to assess whole number magnitude understanding, many researchers 

have also employed number line tasks, in which individuals are asked to place a number along a 

line with two numerical endpoints (e.g., Iuculano & Butterworth, 2011). While substantial 

research and debate has focused on what aspect(s) of numerical magnitude understanding 



Algebra and Rational Numbers   

 

22 

number line estimation tasks are measuring (for example, the format of the underlying mental 

representation versus proportion based responding; e.g., Barth & Paladino, 2011; Cohen & 

Blanc-Goldhammer, 2011; Hurst, Monahan, Heller, & Cordes, 2014; Opfer, Siegler, & Young, 

2011), similar to the results from the current study using a comparison task, performance on 

number line tasks have also been shown to relate to more advanced math ability, including 

algebra (Booth & Newton, 2012; Siegler, Thompson, & Schneider, 2011). Thus, future research 

should further investigate performance on a variety of magnitude-based tasks, using different 

notations, and presenting them in different formats (e.g., different length decimals, same length 

decimals, different denominators, same denominators, etc.) to provide converging evidence to 

further our understanding of how people approach rational number values in each of these 

contexts and how performance may be associated with better or worse understanding.` 

 Interestingly, although there was some evidence that measures of rational number 

magnitude understanding were predictive of algebra ability, once arithmetic fluency measures 

were controlled for, magnitude measures provided only a small amount of additional variance 

(about 10%) in predicting algebra ability and none of the individual magnitude measures 

uniquely predicted algebra ability. Thus, it may be that, once arithmetic ability was controlled 

for, our magnitude measures served as a proxy for a general understanding of non-integer, 

rational number values, in which the format of the notation was irrelevant.  

On the other hand, the arithmetic measures accounted for 31% of the variance in algebra 

fluency, even after controlling for the magnitude measures. One explanation for why arithmetic 

fluency accounted for such a high amount of variance in algebra ability may be that the 

arithmetic fluency measures also encompassed some aspect of magnitude understanding. That is, 

rational number arithmetic fluency requires some of the same abilities to process rational number 
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notation and potentially to approximate magnitudes that a comparison task may entail. Thus our 

measure of arithmetic fluency may have also partially accounted for measures of magnitude 

understanding. In addition, unlike our magnitude measures in which we adjusted for general 

speed of processing of numerical information, we did not have a measure of whole-number 

arithmetic fluency to subtract from the rational number arithmetic measures, thus confounding 

our rational number arithmetic measures with general arithmetic processing (i.e., the speed with 

which individuals perform arithmetic, regardless of the format of the numbers involved).  Future 

research should also include general measures of arithmetic and magnitude processing in order to 

account for the potential overlap in these tasks. In general, however, these findings do suggest 

that the fluency and flexibility with complex notations involving fractions and decimals as 

magnitudes and in performing arithmetic may be key variables involved in the relationship 

between rational number understanding and algebra ability.  

Importantly, the algebra assessment did not require any computations involving fraction 

or decimal values, suggesting that the obtained relationship between algebra and rational number 

arithmetic was not solely driven by the individual’s ability to arithmetically manipulate fractions 

and decimals specifically.  Moreover, since both fraction and decimal arithmetic fluency 

measures were significant predictors while controlling for the other, the underlying relationship 

was not entirely due to factors that are shared between both fraction and decimal arithmetic. 

Thus, the relationship is not solely due to arithmetic fluency and the memorization of procedures 

in general, since this would be a shared skill between fraction and decimal arithmetic (although 

these findings do not rule out that this skill is involved, just that it is likely not the only relevant 

factor). Instead, factors unique to fraction arithmetic fluency and unique to decimal arithmetic 

fluency are likely each related to algebra fluency. For example, fraction arithmetic requires 
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knowledge about denominators and ratios and decimal arithmetic requires knowledge about 

place-value, both factors that may play a role in algebra learning.   

Although algebra performance appears to uniquely rely upon aspects of fraction 

arithmetic and of decimal arithmetic, more research is needed to clarify what aspects of 

arithmetic processing is crucial for algebraic understanding. In particular, arithmetic relies upon 

both conceptual knowledge of arithmetic processes (e.g., understanding why common 

denominators are required for addition, but not multiplication) as well as a procedural 

understanding of the actions to be carried out (e.g., knowing the procedure for finding common 

denominators). Furthermore, conceptual and procedural learning within the domain of rational 

numbers tend to be very intertwined; for example, an improvement in one type of knowledge can 

often lead to an improvement in the other (Rittle-Johnson, Siegler, & Alibali, 2001). Thus, it is 

still unclear whether it is primarily the conceptual knowledge required to have arithmetic fluency 

or if it is about executing the specific procedures.  

In addition, it has been argued that “algebra” may not be a singular mathematical 

construct and instead involves a diverse range of conceptual and procedural knowledge (e.g., 

Kilpatrick & Izsak, 2008; Magruder, 2012). Thus, one limitation of our study is our single 

measure of algebra fluency, which leaves open the question of how rational number 

understanding may be related to various aspects of algebra ability.  For example, algebra 

involves manipulating equations and understanding variables (e.g., Kilpatrick & Izsak, 2008), 

having an understanding of the equal sign (e.g., Knuth, Stephens, McNeil, & Alibali, 2006), 

having an understanding of the real number system (e.g., Christou & Vosnaidou, 2012), and so 

on. Although our algebra assessment covered a variety of algebraic tasks, it may be that some 

aspects of rational number knowledge are more relevant for particular aspects of algebra 
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knowledge than others. In particular, given that different aspects of algebra understanding may 

differentially rely upon procedural and conceptual competences, it may be that some aspects of 

algebra are more directly related to the procedural aspects of fraction and decimal understanding 

(for example, solving step-by-step linear equations; Rittle-Johnson & Star, 2007), while other 

aspects of algebra may be more directly related to conceptual aspects of fraction and decimal 

understanding (for example, having a strong understanding of equivalence, including equivalent 

magnitudes). Thus, this lack of specificity in our measure of algebra fluency may limit the 

interpretations we can make about what aspect(s) of algebra ability may be reliant upon specific 

aspects of rational number understanding.  

Moreover, the current study did not include measures of more general cognitive abilities, 

like working memory or verbal abilities. Substantial research suggests that working memory may 

be related to rational number ability in particular (Jordan et al., 2013; Vukovik et al., 2014), 

leaving open the question of whether these general cognitive abilities may also play a role in the 

relationship between rational number understanding and algebra ability. Given that we included 

multiple individual measures in our regression model, which likely correlate with domain-

general measures, and still found some of these measures to uniquely predict algebra ability, our 

findings do point to a strong relationship between rational number understanding and algebra 

ability.  However, future research should include general cognitive measures to rule out the 

influence of these domain-general aspects of cognitive functioning in contributing to the pattern 

of results obtained.   

Lastly, the current study leaves open the question of whether developmental differences 

may exist in the relative contribution of arithmetic and magnitude knowledge in both fraction 

and decimal notation in predicting algebra ability. The relative contributions of different types of 
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rational number knowledge may depend on the educational stage of the participants as well as 

the type of notation used. In particular, how arithmetic ability and magnitude knowledge of 

rational numbers may relate to algebra ability when the child first begins learning algebra, as 

well as how the relationship may change throughout the learning of algebra is an important open 

question that may shed light on both the learning of algebra and of rational numbers. 

In conclusion, results from the current study suggest that the relationship between 

rational number knowledge and algebra ability holds even in educated adults and is driven by 

fraction and decimal arithmetic fluency, as well as a more generalized understanding of rational 

number magnitudes and the symbols used to represent them. The unique roles of fraction and 

decimal notation highlight that more research is needed to directly compare the use of the two 

notations for understanding rational number magnitudes and procedures in order to promote both 

rational number understanding and algebra learning in the classroom.  
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 Table 1: Descriptive Statistics 

 

Table 1: Descriptive statistics for all measures (N=51). Bivariate Pearson correlations are shown 

with two-tailed significance indicated as **p<0.006, *p<0.05. 

 

 

 Mean 

(SD) 

Correlation Coefficients (r) 

  (1) (2) (3) (4) (5) (6) (7) (8) 

(1) Algebra CT (sec) 568 

(196.5) 

-        

(2) Fraction 

Arithmetic 

231 

(101.7) 

0.575*

* 

-       

(3) Decimal 

Arithmetic 

417 

(137.6) 

0.579*

* 

0.347* -      

(4) Fraction RTadj  

(ms) 

2243 

(1178.8) 

0.337* 0.099  0.29* -     

(5) Decimal RTadj 

(ms) 

229 

(90.1) 

0.358*  0.07 0.274 0.15 -    

(6) Fraction β (ms) -294 

(537.2) 

-0.11  -0.07 -0.128 -0.440** -0.06 -   

(7) Decimal β (ms) -44 

(68.4) 

0.391*

*  

0.183 0.26 0.22 0.203 -0.164 -  

(8) Fraction SE (ms) 464 

(322.3) 

0.297*  0.06 0.27 0.922** 0.192 -0.352* 0.17 - 

(9) Decimal SE (ms) 62 (23.2) 0.389*

* 

0.12 0.44** 0.34* 0.62** 0.004 0.255 0.39** 
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Table 2: Regression Results 

 Variable  Statistic 

Model 1: R2=0.29, F(4,46)=4.7, p=0.003 

Model 1: 

Magnitude 

Measures 

DvD β 0.292* t(50)=2.25, p=0.029 

DvD RTadj 0.263* t(50)=2.06, p=0.045 

FvF β 0.076 t(50)=0.54, p=0.59 

FvF RTadj 0.266 t(50)=1.88, p=0.066 

Model 2: R2=0.495, F(2,48)=23.495, p<0.001 

Model 2: 

Arithmetic 

Measures 

Fraction Arithmetic 

Fluency 

0.426* t(50)=3.89, p<0.001 

Decimal Arithmetic 

Fluency 

0.431* t(50)=3.94, p<0.001 

Model 3: R2=0.590, F(6,44)=10.54, p<0.001 

Model 3: 

All 

Measures 

DvD β 0.172 t(50)=1.69, p=0.099 

DvD RTadj 0.19 t(50)=1.89, p=0.065 

FvF β 0.079 t(50)=0.74, p=0.466 

FvF RTadj 0.178 t(50)=1.60, p=0.117 

Fraction Arithmetic 

Fluency 

0.416* t(50)=4.1, p<0.001 

Decimal Arithmetic 

Fluency 

0.296* t(50)=2.68, p=0.01 

 

Table 2: Results from the regression analyses. There was a significant change from Model 1 to 

Model 3 (ΔR2=0.307, F(2,42)=16.8, p<0.001) and  from Model 2 to Model 3 (ΔR2=0.103, 

F(4,44)=2.81, p=0.037).  
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Appendix A 

Complete list of the 12 Algebra questions 

 

Question: 

There are two pipes. The first pipe is 𝑥 meters long. The second pipe is 𝑦 times as long as the 

first one. How long is the second pipe? 

Question: 

In Zedland, total shipping charges to ship an item are given by the equation 𝑦 = 4𝑥 + 30 where 

𝑥 is the weight in grams and 𝑦 is the cost in zeds. If you have 150 zeds, how many grams can 

you ship?  

Question: 

Simplify the expression 2(𝑥 + 𝑦) − (2𝑥 − 𝑦) 

Question: 

Give two points on the line 𝑦 = 𝑥 + 2 

Question: 

Simplify the expression 2𝑎2 × 3𝑎 

Question:  

The table below shows a relation between 𝑥 and 𝑦 

𝑥 1 2 3 4 5 

𝑦 1 3 5 7 9 

What is the relation between 𝑥 and 𝑦? 

Question: 

 3(2𝑥 − 1) + 2𝑥 = 21 What is the value of 𝑥? 

Question: 

The number of jackets that Haley has is 3 more than the number Anna has. If 𝑛 is the number of 

jackets Haley has, how many jackets does Anna have in terms of 𝑛? 

Question: 

𝑎 = 3 and 𝑏 = −1 What is the value of 2𝑎 + 3(2 − 𝑏)? 

Question: 

Joe knows that a pen costs 1 zed more than a pencil. His friend bought 2 pens and 3 pencils for 

17 zeds. How many zeds will Joe need to buy 1 pen and 2 pencils? 

Question: 

Simplify the expression 4𝑥 − 𝑥 + 7𝑦 − 2𝑦 

Question: 

If  
𝑥

3
> 8 then what does 𝑥 equal? 
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